Tellurium
From Wikipedia, the free encyclopedia
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
General | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Name, Symbol, Number | tellurium, Te, 52 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Chemical series | metalloids | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Group, Period, Block | 16, 5, p | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Appearance | silvery lustrous gray |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Standard atomic weight | 127.60(3) g·mol−1 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Electron configuration | [Kr] 4d10 5s2 5p4 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Electrons per shell | 2, 8, 18, 18, 6 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Physical properties | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Phase | solid | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Density (near r.t.) | 6.24 g·cm−3 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Liquid density at m.p. | 5.70 g·cm−3 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Melting point | 722.66 K (449.51 °C, 841.12 °F) |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Boiling point | 1261 K (988 °C, 1810 °F) |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Heat of fusion | 17.49 kJ·mol−1 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Heat of vaporization | 114.1 kJ·mol−1 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Heat capacity | (25 °C) 25.73 J·mol−1·K−1 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Atomic properties | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Crystal structure | hexagonal | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Oxidation states | ±2, 4, 6 (mildly acidic oxide) |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Electronegativity | 2.1 (Pauling scale) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Ionization energies (more) |
1st: 869.3 kJ·mol−1 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2nd: 1790 kJ·mol−1 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
3rd: 2698 kJ·mol−1 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Atomic radius | 140 pm | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Atomic radius (calc.) | 123 pm | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Covalent radius | 135 pm | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Van der Waals radius | 206 pm | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Miscellaneous | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Magnetic ordering | nonmagnetic | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Thermal conductivity | (300 K) (1.97–3.38) W·m−1·K−1 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Speed of sound (thin rod) | (20 °C) 2610 m/s | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Young's modulus | 43 GPa | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Shear modulus | 16 GPa | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Bulk modulus | 65 GPa | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mohs hardness | 2.25 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Brinell hardness | 180 MPa | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
CAS registry number | 13494-80-9 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Selected isotopes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
References |
Tellurium (IPA: /tiˈlʊəriəm, tɛ-/) is a chemical element that has the symbol Te and atomic number 52. A brittle silver-white metalloid which looks like tin, tellurium is chemically related to selenium and sulfur. Tellurium is primarily used in alloys and as a semiconductor.
Contents |
[edit] Notable characteristics
Tellurium is a relatively rare element, in the same chemical family as oxygen, sulfur, selenium, and polonium (the chalcogens).
When crystalline, tellurium is silvery-white and when it is in its pure state it has a metallic luster. This is a brittle and easily pulverized metalloid. Amorphous tellurium is found by precipitating it from a solution of tellurous or telluric acid (Te(OH)6). However, there is some debate whether this form is really amorphous or made of minute crystals.
Tellurium is a p-type semiconductor that shows a greater conductivity in certain directions which depends on atomic alignment. Chemically related to selenium and sulfur, the conductivity of this element increases slightly when exposed to light.
It can be doped with copper, gold, silver, tin, or other metals. When in its molten state, tellurium is corrosive to copper, iron, and stainless steel.
Tellurium gives a greenish-blue flame when burned in normal air and forms tellurium dioxide as a result.
[edit] Applications
Metal alloys
- It is mostly used in alloys with other metals. It is added to lead to improve its strength and durability, and to decrease the corrosive action of sulfuric acid.
- When added to stainless steel and copper it makes these metals more workable. It is alloyed into cast iron for chill control.
Other uses:
- Used in ceramics.
- It is used in chalcogenide glasses.
- Tellurium is also used in blasting caps
- Organic tellurides have also been employed as initiators for living radical polymerisation and electron-rich mono- and di-tellurides possess antioxidant activity.
High purity metalorganics of both selenium and tellurium are reported to be obtained by using innovative chemical purification strategy, also called adduct purification. These high purities are often required for semiconductor industry uses. [1][2]
Semiconductor industry uses:
- Bismuth telluride (Bi2Te3) has found use in thermoelectric devices.
- Tellurium has potential applications in cadmium telluride (CdTe) solar panels. Some of the highest efficiencies for solar cell electric power generation have been obtained by using this material, but this application has not yet caused demand to increase significantly. If some of the cadmium in CdTe is replaced by zinc then CdZnTe is formed which is used in solid-state x-ray detectors.
- Alloyed with both cadmium and mercury, to form mercury cadmium telluride, an infrared sensitive semiconductor material is formed. Organotellurium compounds such as dimethyl telluride, diethyl telluride, diisopropyl telluride, diallyl telluride and methyl allyl telluride are used as precursors for MOVPE growth of II-VI compound semiconductors. Diisopropyl telluride (DIPTe) is employed as the preferred precursor for achieving the low temperature growth of CdHgTe by MOVPE.
[edit] History
Tellurium (Latin tellus meaning "earth") was discovered in 1782 by the Hungarian Franz-Joseph Müller von Reichenstein (Müller Ferenc) in Nagyszeben (now, Sibiu) Transylvania. In 1789, another Hungarian scientist, Pál Kitaibel, also discovered the element independently, but later he gave the credit to Müller. In 1798, it was named by Martin Heinrich Klaproth who earlier isolated it.
Tellurium was used as a chemical bonder in the making of the outer shell of the first atom bomb. The 1960s brought growth in thermoelectric applications for tellurium, as well as its use in free-machining steel, which became the dominant use.
[edit] Occurrence
With an abundance in the Earth's crust similar to platinum, tellurium is, apart from the precious metals, the rarest stable solid element in the earth's crust. Its abundance by mass is less than 0.001 ppm. By comparison, even the rarest of the lanthanides have crustal abundances of 0.5 ppm, tin and caesium have abundances of 2 ppm, and barium of 400 ppm.
The extreme rarity of tellurium in the Earth's crust is not a reflection of its cosmic abundance, which is in fact greater than that of rubidium[1], even though rubidium is ten thousand times more abundant in the Earth's crust. Rather, the extraordinarily low abundance of tellurium on Earth results from the fact that, during the formation of the Earth, the stable form of elements in the absence of oxygen and water was controlled by the oxidation and reduction of hydrogen. Under this scenario elements such as tellurium which form volatile hydrides were severely depleted during the formation of the Earth's crust through evaporation. Tellurium and selenium are the heavy elements most depleted in the Earth's crust by this process.
Tellurium is sometimes found in its native (elemental) form, but is more often found as the tellurides of gold (calaverite, krennerite, petzite, sylvanite, and others). Tellurium compounds are the only chemical compounds of gold found in nature, but tellurium itself (unlike gold) is also found combined with other elements (in metallic salts). The principal source of tellurium is from anode sludges produced during the electrolytic refining of blister copper. It is a component of dusts from blast furnace refining of lead. Tellurium is produced mainly in the US, Canada, Peru, and Japan.
Commercial-grade tellurium is usually marketed as minus 200-mesh powder but is also available as slabs, ingots, sticks, or lumps. The year-end price for tellurium in 2000 was US$ 14 per pound.
- See also: Telluride, Colorado, category:Telluride minerals
[edit] Compounds
Tellurium is in the same series as sulfur and selenium and forms similar compounds. A compound with metal or hydrogen and similar ions is called a telluride. Gold and silver tellurides are considered good ores. Compounds with tellurate ions complexes TeO42- or TeO66- are known as tellurates. Also tellurites TeO32-. Also tellurols –TeH, named with prefix tellanyl- or suffix -tellurol.
- See also: Category:Tellurium compounds
[edit] Isotopes
There are 30 known isotopes of tellurium with atomic masses that range from 108 to 137. Naturally found tellurium consists of eight isotopes (listed in the table to the right); three of them are observed to be radioactive. 128Te has the longest known half-life, 2.2×1024 years, among all radioactive isotopes. Tellurium is the first element which can undergo Alpha Decay, with isotopes 106Te to 110Te being able to undergo this mode of decay.
[edit] Precautions
Tellurium and tellurium compounds should be considered to be mildly toxic and need to be handled with care.
Acute poisoning is rare.[3] Tellurium is not reported to be carcinogenic.[3]
Humans exposed to as little as 0.01 mg/m3 or less in air develop "tellurium breath", which has a garlic-like odor.[4] The garlic odor that is associated with human intake of tellurium compounds is caused from the tellurium being metabolized by the body. When the body metabolizes tellurium in any oxidation state, the tellurium gets converted into dimethyl telluride. Dimethyl telluride is volatile and produces the garlic-like smell.
[edit] References
- ^ DOI:10.1016/0022-0248(88)90613-6 Journal of Crystal Growth Volume 93, Issues 1-4 , 1988, Pages 744-749
- ^ U.S. Patent 5117021 Method for purification of tellurium and selenium alkyls
- ^ a b Harrison, W; S Bradberry, J Vale (1998-01-28). Tellurium (HTML). International Programme on Chemical Safety. Retrieved on January 12, 2007.
- ^ Tellurium (HTML). Los Alamos National Laboratory (2003-12-15). Retrieved on January 12, 2007.