Truss
From Wikipedia, the free encyclopedia
In architecture and structural engineering, a truss is a static structure consisting of straight slender members inter-connected at joints into triangular units.
A plane truss is one where all the dimensions lie within a 2-dimensional plane. A space truss has members extending into 3 dimensions.
Contents |
[edit] History
The earliest trusses were made out of wood. The ancient Greeks used truss construction for their dwellings. In 1570 Andrea Palladio published I Quattro Libri dell'Architettura, which contained instructions for wooden trussed bridges.
[edit] Statics of trusses
A truss can be thought of as a beam where the web consists of a series of separate members instead of a continuous plate. In the truss, the lower horizontal member (the bottom chord) and the upper horizontal member (the top chord) carry tension and compression, fulfilling the same function as the flanges of an I-beam. Which chord carries tension and which carries compression depends on the overall direction of bending. In the truss pictured above right, the bottom chord is in tension, and the top chord in compression.
The diagonal and vertical members form the truss web, and carry the shear force. Individually, they are also in tension and compression, the exact arrangement of forces depending on the type of truss and again on the direction of bending. In the truss shown above right, the vertical members are in tension, and the diagonals are in compression.
In addition to carrying the static forces, the members serve additional functions of stabilising each other, preventing buckling. In the picture, the top chord is prevented from buckling by the presence of bracing and by the stiffness of the web members.
The inclusion of the elements shown is largely an engineering decision based upon economics, being a balance between the costs of raw materials, off-site fabrication, component transportation, on-site erection, the availability of machinery and the cost of labor. In other cases the appearance of the structure may take on greater importance and so influence the design decisions beyond mere matters of economics. Modern materials such as prestressed concrete and fabrication methods, such as automated welding, have significantly influenced the design of modern bridges.
In order for a truss with pin-connected members to be rigid, it must be composed entirely of triangles. In mathematical terms, we have the following necessary condition for stability:
where m is the total number of truss members, j is the total number of joints and r is the number of reactions (equal to 3 generally) in a 2-dimensional structure.
When m = 2j − 3, the truss is said to be statically determinate because the (m+3) internal member forces and support reactions can then be completely determined by 2j equilibrium equations, once we know the external loads and the geometry of the truss. Given a certain number of joints, this is the minimum number of members, in the sense that if any member is taken out (or fails), then the truss as a whole fails. While the relation (a) is necessary, it is not sufficient for stability, which also depends on the truss geometry, support conditions and the load carrying capacity of the members.
Some structures are built with more than this minimum number of truss members. Those structures may survive even when some of the members fail. They are called statically indeterminate structures, because their member forces also depend on the relative stiffness of the members, in addition to the equilibrium condition.
[edit] Analysis of trusses
Because the forces in each of its two main girders are essentially planar, a truss is usually modelled as a two-dimensional plane frame. If there are significant out-of-plane forces, the structure must be modelled as a three-dimensional space frame.
The analysis of trusses often assumes that loads are applied to joints only and not at intermediate points along the members. The weight of the members is often insignificant compared to the applied loads and so is often omitted. If required, half of the weight of each member may be applied to the adjacent joints. Provided the members are long and slender, the moments transmitted through the joints are negligible and they can be treated as "hinges" or 'pin-joints'. Every member of the truss is then in pure compression or pure tension -- shear, bending moment, and other more complex stresses are all practically zero. This makes trusses easier to analyze. This also makes trusses physically stronger than other ways of arranging material -- because nearly every material can hold a much larger load in tension and compression than in shear, bending, torsion, or other kinds of force.
Structural analysis of trusses of any type can readily be carried out using a matrix method such as the matrix stiffness method, the flexibility method or the finite element method.
[edit] Forces in members
On the right is a simple, statically determinate flat truss with 9 joints and (2 x 9 − 3 =) 15 members. External loads are concentrated in the outer joints. Since this is a symmetrical truss with symmetrical vertical loads, it is clear to see that the reactions at A and B are equal, vertical and half the total load.
The internal forces in the members of the truss can be calculated in a variety of ways including the graphical methods:
Or the analytical Ritter method (method of sections).
In the Cremona method, first the external forces and reactions are drawn (to scale) forming a vertical line in the lower right side of the picture. This is the sum of all the force vectors and is equal to zero as there is mechanical equilibrium.
Since the equilibrium holds for the external forces on the entire truss construction, it also holds for the internal forces acting on each joint. For a joint to be at rest the sum of the forces on a joint must also be equal to zero. Starting at joint Aorda, the internal forces can be found by drawing lines in the Cremona diagram representing the forces in the members 1 and 4, going clockwise; VA (going up) load at A (going down), force in member 1 (going down/left), member 4 (going up/right) and closing with VA. As the force in member 1 is towards the joint, the member is under compression, the force in member 4 is away from the joint so the member 4 is under tension. The length of the lines for members 1 and 4 in the diagram, multiplied with the chosen scale factor is the magnitude of the force in members 1 and 4.
Now, in the same way the forces in members 2 and 6 can be found for joint C; force in member 1 (going up/right), force in C going down, force in 2 (going down/left), force in 6 (going up/left) and closing with the force in member 1.
The same steps can be taken for joints D, H and E resulting in the complete Cremona diagram where the internal forces in all members are known.
In a next phase the forces caused by wind must be considered. Wind will cause pressure on the upwind side of a roof (and truss) and suction on the downwind side. This will translate to asymmetrical loads but the Cremona method is the same. Wind force may introduce larger forces in the individual truss members than the static vertical loads.
[edit] Design of members
Once the force on each member is known, the next step is to determine the cross section of the individual truss members. For members under tension the cross-sectional area A can be found using A = F × γ / σy, where F is the force in the member, γ is a safety factor (typically 1.5 but depending on building codes) and σy is the yield tensile strength of the steel used.
The members under compression also have to be designed to be safe against buckling.
The weight of a truss member depends directly on its cross section -- that weight partially determines how strong the other members of the truss need to be. Giving one member a larger cross section than on a previous iteration requires giving other members a larger cross section as well, to hold the greater weight of the first member -- one needs to go through another iteration to find exactly how much greater the other members need to be. Sometimes the designer goes through several iterations of the design process to converge on the "right" cross section for each member. On the other hand, reducing the size of one member from the previous iteration merely makes the other members have a larger (and more expensive) safety factor than is technically necessary, but doesn't require another iteration to find a buildable truss.
The effect of the weight of the individual truss members in a large truss, such as a bridge, is usually insignificant compared to the force of the external loads.
[edit] Design of joints
After determining the minimum cross section of the members, the last step in the design of a truss would be detailing of the bolted joints, e.g., involving shear of the bolt connections used in the joints, see also shear stress.
[edit] Truss types
A metal plate-connected wood truss is a roof or floor truss whose wood members are connected with metal connector plates.
There are two basic types of trusses. The pitched truss or common truss is characterized by its triangular shape. It is most often used for roof construction. Some common trusses are named according to their web configuration. The chord size and web configuration are determined by span, load and spacing. The parallel chord truss or flat truss gets its name from its parallel top and bottom chords. It is often used for floor construction. A combination of the two is a truncated truss, used in hip roof construction.
[edit] Vierendeel truss
A special truss is the Vierendeel truss, named after the Belgian engineer Arthur Vierendeel [1], who developed the design in 1896. Also described as a Vierendeel frame, this truss has rigid upper and lower beams, connected by vertical beams. The joints are also rigid. In this statically indeterminate truss, all members are subject to bending moments. Trusses of this type are used in some bridges (see Vierendeel bridge), and were also used in the frame of the Twin Towers of the World Trade Center. By eliminating diagonal members, the creation of rectangular openings for windows and doors is simplified, since this truss can reduce or eliminate the need for compensating shear walls.
[edit] See also
- Andreini tessellations, the 28 only ways to fill 3D space with trusses that have identical joints everywhere
- Brown truss
- Geodesic dome, a truss in the shape of a sphere
- Girder
- Lattice bridge, using a truss form allowing lightweight components
- Mechanics of structures
- Serrurier truss, a truss form used for telescopes
- Space frame
- Stress:
- Structural steel
- Tensegrity truss, a truss where no compression member touches any other compression member
- Truss bridge
- Truss rod, a guitar part
- Vierendeel bridge
[edit] External links
- Historic Bridges of Michigan and Elsewhere With a focus on metal truss bridges, this site provides photos, information, maps, and links.
- Classical Truss Theory
- An Introduction to Historic Truss Bridges
- truss bridge designer simulation (requires Java)
- Trusses in 20th-century architecture
- Vierendeel bridges (in Dutch)
- Residential trussed roofs Australia