การทำเหมืองข้อมูล
จากวิกิพีเดีย สารานุกรมเสรี
การทำเหมืองข้อมูล (อังกฤษ: data mining) หรืออาจจะเรียกว่า การค้นหาความรู้ในฐานข้อมูล (Knowledge Discovery in Databases - KDD) เป็นเทคนิคเพื่อค้นหารูปแบบ (pattern) ของจากข้อมูลจำนวนมหาศาลโดยอัตโนมัติ โดยใช้ขั้นตอนวิธีจากวิชาสถิติ การเรียนรู้ของเครื่อง และ การรู้จำแบบ หรือในอีกนิยามหนึ่ง การทำเหมืองข้อมูล คือ กระบวนการที่กระทำกับข้อมูล(โดยส่วนใหญ่จะมีจำนวนมาก) เพื่อค้นหารูปแบบ แนวทาง และความสัมพันธ์ที่ซ่อนอยู่ในชุดข้อมูลนั้น โดยอาศัยหลักสถิติ การรู้จำ การเรียนรู้ของเครื่อง และหลักคณิตศาสตร์
ความรู้ที่ได้จากการทำเหมืองข้อมูลมีหลายรูปแบบ ได้แก่
- กฎเชื่อมโยง (Association rule)
- แสดงความสัมพันธ์ของเหตุการณ์หรือวัตถุ ที่เกิดขึ้นพร้อมกัน ตัวอย่างของการประยุกต์ใช้กฎเชื่อมโยง เช่น การวิเคราะห์ข้อมูลการขายสินค้า โดยเก็บข้อมูลจากระบบ ณ จุดขาย (POS) หรือร้านค้าออนไลน์ แล้วพิจารณาสินค้าที่ผู้ซื้อมักจะซื้อพร้อมกัน เช่น ถ้าพบว่าคนที่ซื้อเทปวิดีโอมักจะซื้อเทปกาวด้วย ร้านค้าก็อาจจะจัดร้านให้สินค้าสองอย่างอยู่ใกล้กัน เพื่อเพิ่มยอดขาย หรืออาจจะพบว่าหลังจากคนซื้อหนังสือ ก แล้ว มักจะซื้อหนังสือ ข ด้วย ก็สามารถนำความรู้นี้ไปแนะนำผู้ที่กำลังจะซื้อหนังสือ ก ได้
- การแบ่งประเภทข้อมูล (Data classification)
- หากฏเพื่อระบุประเภทของวัตถุจากคุณสมบัติของวัตถุ เช่น หาความสัมพันธ์ระหว่างผลการตรวจร่างกายต่าง ๆ กับการเกิดโรค โดยใช้ข้อมูลผู้ป่วยและการวินิจฉัยของแพทย์ที่เก็บไว้ เพื่อนำมาช่วยวินิจฉัยโรคของผู้ป่วย หรือการวิจัยทางการแพทย์ ในทางธุรกิจจะใช้เพื่อดูคุณสมบัติของผู้ที่จะก่อหนี้ดีหรือหนี้เสีย เพื่อประกอบการพิจารณาการอนุมัติเงินกู้
- การแบ่งกลุ่มข้อมูล (Data clustering)
- แบ่งข้อมูลที่มีลักษณะคล้ายกันออกเป็นกลุ่ม แบ่งกลุ่มผู้ป่วยที่เป็นโรคเดียวกันตามลักษณะอาการ เพื่อนำไปใช้ประโยชน์ในการวิเคราะห์หาสาเหตุของโรค โดยพิจารณาจากผู้ป่วยที่มีอาการคล้ายคลึงกัน
- จิตทัศน์ (Visualization)
- สร้างภาพคอมพิวเตอร์กราฟิกที่สามารถนำเสนอข้อมูลมากมายอย่างครบถ้วนแทนการใช้ขัอความนำเสนอข้อมูลที่มากมาย เราอาจพบข้อมูลที่ซ้อนเร้นเมื่อดูข้อมูลชุดนั้นด้วยจิตทัศน์
สารบัญ |
[แก้] ขั้นตอนการทำเหมืองข้อมูล
- ทำความเข้าใจปัญหา
- ทำความเข้าใจข้อมูล
- เตรียมข้อมูล
- สร้างแบบจำลอง
- ประเมิน
- นำไปใช้งาน
[แก้] ประโยชน์จากการทำเหมืองข้อมูล
การทำเหมืองข้อมูล จำเป็นต้องอาศัยบุคลากรจากหลายฝ่าย และต้องอาศัยความรู้จำนวนมาก ถึงจะได้รับประโยชน์อย่างแท้จริง เพราะสิ่งที่ได้จากขั้นตอนวิธีเป็นเพียงตัวเลข และข้อมูล ที่อาจจะนำไปใช้ประโยชน์ได้หรือใช้ประโยชน์อะไรไม่ได้เลยก็เป็นได้ ผู้ที่ศึกษาการทำเหมืองข้อมูลจึงควรมีความรู้รอบด้านและต้องติดต่อกับทุก ๆ ฝ่าย เพื่อให้เข้าใจถึงขอบเขตของปัญหาโดยแท้จริงก่อน เพื่อให้การทำเหมืองข้อมูลเกิดประโยชน์อย่างแท้จริง
[แก้] ดูเพิ่ม
- คลังข้อมูล (Data warehouse)
- การทำเหมืองข้อความ (Text mining)
- การทำเหมืองเว็บ (Web mining)
- ฐานข้อมูล (Database)
[แก้] แหล่งข้อมูลอื่น
- KDnuggets - a portal for Data Mining, Knowledge Discovery, Genomic Mining, Web Mining
- Data Mining whitepapers, webcasts and case studies
- Open Directory Project - Data Mining websites
- กลุ่มวิจัยในประเทศไทย
การทำเหมืองข้อมูล เป็นบทความเกี่ยวกับ วิชา ความรู้ และศาสตร์ต่างๆ ที่ยังไม่สมบูรณ์ ต้องการตรวจสอบ เพิ่มเนื้อหา หรือเพิ่มแหล่งอ้างอิง คุณสามารถช่วยเพิ่มเติมหรือแก้ไข เพื่อให้สมบูรณ์มากขึ้น ข้อมูลเกี่ยวกับ การทำเหมืองข้อมูล ในภาษาอื่น อาจสามารถหาอ่านได้จากเมนู ภาษาอื่น ด้านซ้ายมือ |