快速傅里叶变换
维基百科,自由的百科全书
快速傅里叶变换(Fast Fourier Transform,FFT),是离散傅里叶变换的快速算法,也可用于计算离散傅里叶变换的逆变换。快速傅里叶变换有广泛的应用,如数字信号处理、计算大整数乘法、求解偏微分方程等等。本条目只描述各种快速算法,对于离散傅里叶变换的性质和应用,请参见离散傅里叶变换。
对于复数序列,离散傅里叶变换公式为:
直接变换的计算复杂度是(参见大O符号)。快速傅里叶变换可以计算出与直接计算相同的结果,但只需要的计算复杂度。通常,快速算法要求n能被因数分解,但不是所有的快速傅里叶变换都要求n是合数,对于所有的整数n,都存在复杂度为的快速算法。
除了指数的符号相反、并多了一个1/n的因子,离散傅里叶变换的正变换与逆变换具有相同的形式。因此所有的离散傅里叶变换的快速算法同时适用于正逆变换。
[编辑] Cooley-Tukey算法
Cooley-Tukey算法是最常见的FFT算法。这一方法以分治法为策略递归地将长度为N = N1N2的DFT分解为长度分别为N1和N2的两个较短序列的DFT,以及与个旋转因子的复数乘法。
这种方法以及FFT的基本思路在1965年J. W. Cooley和J. W. Tukey合作发表An algorithm for the machine calculation of complex Fourier series之后开始为人所知。但后来发现,实际上这两位作者只是重新发明了高斯在1805年就已经提出的算法。(and subsequently rediscovered several times in limited forms).
Cooley-Tukey算法最有名的应用,是将序列长为N 的DFT分割为两个长为N/2 的子序列的DFT,因此这一应用只适用于序列长度为2的幂的DFT计算,即基2-FFT。实际上,如同高斯和Cooley与Tukey都指出的那样,Cooley-Tukey算法也可以用于序列长度N 为任意因数分解形式的DFT,即混合基FFT,而且还可以应用于其他诸如分裂基FFT等变种。尽管Cooley-Tukey算法的基本思路是采用递归的方法进行计算,大多数传统的算法实现都将显示的递归算法改写为非递归的形式。另外,因为Cooley-Tukey算法是将DFT分解为较小长度的多个DFT,因此它可以同任一种其他的DFT算法联合使用。
[编辑] 其他算法
在Cooley-Tukey算法之外还有其他DFT的快速算法。对于长度N = N1N2且N_1与N_2互质的序列,可以采用基于中国剩余定理的质因子FFT算法将N 长序列的DFT分解为两个子序列的DFT。与 Cooley-Tukey 算法不同的是,质因子算法不需要旋转因子。Rader-Brenner 算法是类似于 Cooley-Tukey 算法,但是采用的旋转因子都是纯虚数,以增加加法运算和降低了数值稳定性为代价减少了乘法运算。