雙線性形
维基百科,自由的百科全书
在F域中,向量空間V的雙線性形是一個映射:
-
-
- V × V → F (線性變換)
-
B : V × V → F 是雙線性如果
是線性。這個定義適用於交換環的模,其環擁有模同態的線性映射。
注意一個雙線性形是特別的雙線性運算元。
目录 |
[编辑] 坐标表達方法
如果V是n維向量空間,在V上任意的雙線性形B能以矩陣B(Bij = B(ei,ej)) 表達坐标。 向量u及v的雙線性形:
這裡的 ui 和vj 都是u 和v 的組成部分.
[编辑] 雙對空間映射
V的每一個雙線性形B定義為一對線性映射,由V射到它的雙對空間V*。 的定義
- B1(v)(w) = B(v,w)
- B2(v)(w) = B(w,v)
常常記作:
- B1(v) = B(v, − )
- B2(v) = B( − ,v)
這裡的(–)可以被任意的變數來取代。
如果 V的維度是有限,我們可以找到V的雙雙對空間V**。 B2是B1 的線性映射的轉置。 定義B的轉置為雙線性形:
- B * (v,w) = B(w,v).
如果 V的維度是有限,B1 及B2 擁有相同的等級。如果跟V的維度相同,B1 and B2 是線性同構,由V映射到V*。如此,B就是非降解的。
例如一個線性映射A : V → V*,而B是V上的雙線性形。
- B(v,w) = A(v)(w)
假如A 是同構,這便是一個非降解的形。
[编辑] 對稱
雙線性形 B : V × V → F :
- 對稱 條件: B(v,w) = B(w,v)
- 旋鈕對稱 條件: B(v,w) = − B(w,v)
- alternating 條件: B(v,v) = 0
Every alternating form is skew-symmetric; this may be seen by expanding
- B(v+w,v+w).
If the characteristic of F is not 2 then the converse is also true (every skew-symmetric form is alternating). If, however, char(F) = 2 then a skew-symmetric form is the same thing as a symmetric form and not all of these are alternating.
A bilinear form is symmetric (resp. skew-symmetric) iff its coordinate matrix (relative to any basis) is symmetric (resp. skew-symmetric). A bilinear form is alternating iff its coordinate matrix is skew-symmetric and the diagonal entries are all zero (which follows from skew-symmetry when char(F) ≠ 2).
A bilinear form is symmetric iff the maps are equal, and skew-symmetric iff they are negatives of one another. If char(F) ≠ 2 then one can always decompose a bilinear form into a symmetric and an skew-symmetric part as follows
where B* is the transpose of B (defined above).
[编辑] 張量乘積關係
By the universal property of the tensor product, bilinear forms on V are in 1-to-1 correspondence with linear maps V ⊗ V → F. If B is a bilinear form on V the corresponding linear map is given by
The set of all linear maps V ⊗ V → F is the dual space of V ⊗ V, so bilinear forms may be thought of as elements of
Likewise, symmetric bilinear forms may be thought of as elements of S2V* (the second symmetric power of V*), and alternating bilinear forms as elements of Λ2V* (the second exterior power of V*).
[编辑] 參考
- 雙線性運算子
- 多線性形
- 二次方程序
- sesquilinear form