ARIMA模型
维基百科,自由的百科全书
ARIMA模型,差分自回归滑动平均模型(滑动也译作移动),又称求合自回归滑动平均模型,时间序列预测分析方法之一。ARIMA(p,d,q)中,AR是"自回归",p为自回归项数;MA为"滑动平均",q为滑动平均项数,d为使之成为平稳序列所做的差分次数(阶数)。
ARIMA(p,d,q)模型是ARMA(p,q)模型的扩展。ARIMA(p,d,q)模型可以表示为:
其中L 是滞后算子(Lag operator),
[编辑] 模型特点
- 不直接考虑其他相关随机变量的变化
[编辑] ARIMA模型运用的流程
- 根据时间序列的散点图、自相关函数和偏自相关函数图识别其平稳性。
- 对非平稳的时间序列数据进行平稳化处理。直到处理后的自相关函数和偏自相关函数的数值非显著非零。
- 根据所识别出来的特征建立相应的时间序列模型。平稳化处理后,若偏自相关函数是截尾的,而自相关函数是拖尾的,则建立AR模型;若偏自相关函数是拖尾的,而自相关函数是截尾的,则建立MA模型;若偏自相关函数和自相关函数均是拖尾的,则序列适合ARMA模型。
- 参数估计,检验是否具有统计意义。
- 假设检验,判断(诊断)残差序列是否为白噪声序列。
- 利用已通过检验的模型进行预测。