مبرهنة بايز
من ويكيبيديا، الموسوعة الحرة
مبرهنة بايز هي إحدى نتائج نظرية الإحتمالات الهامة التي تعطي التوزيع الاحتمالي الشرطي للمتغير العشوائي A مع العلم بالمتغير العشوائي B, وذلك بدلالة التوزيع الاحتمالي الشرطي للمتغير العشوائي B مع العلم ب A والتوزع الاحتمالي للمتغيرين A وB.
[تحرير] برهان مبدئي لمبرهنة بايز
لنفرض أن الأحداث A1 و A2 و A3 و A4 و A5 ... تشكل تجزيئا لفضاء العينة S . أي أن A1 و A2 و A3 و A4 و A5 مجموعات جزئية من فضاء العينة S متنافية مثنى مثنى (لا يوجد تقاطع بين أي اثنين منها, واجتماعها جميعها يشكل فضاء العينة بكامله). لنفرض أن حدثا ضمن فضاء العينة B (المنطقة المظللة) فإن :
و بما أن A1 و A2 و A3 و A4 و A5 متنافية مثنى مثنى فإن الأحداث متنافية أيضا مثنى :
باستخدام علاقة الاحتمال الشرطي :
- P(B) = P(B | A1)P(A1) + P(B | A2)P(A2) + P(B | A3)P(A3) + P(B | A4)P(A4) + P(B | A5)P(A5)
[تحرير] مقولات مبرهنة بايز
تقوم مبرهنة بايز بربط الاحتمالات الشرطية conditional و الاحتمالات الحافية marginal probabilities, لكي نقوم باستنتاج هذه المبرهنة, لا بد لنا أن نبدأ من تعريف الاحتمال الشرطي:
و هو ما يقرأ(جداء الاحتمال الشرطي ل A بمعرفة B في احتمال B) يعطي احتمال حدوث A وB معا وهو يساوي أيضا (جداء الاحتمال الشرطي ل B بمعرفة A في احتمال A).
باعتبار P(B) ليس معدوما نقوم بقسمة طرفي المعادلة السابقة عليه:
و هو نص ما يعرف عادة بمبرهنة بايز .
تقرأ : " الاحتمال الشرطي للحدث A بمعرفة الحدث B يساوي إلى احتمال B بمعرفة A مضروبا باحتمال A مقسوما على احتمال B . "