Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Web Analytics
Cookie Policy Terms and Conditions Entscheidung unter Ungewissheit - Wikipedia

Entscheidung unter Ungewissheit

aus Wikipedia, der freien Enzyklopädie

Als Entscheidung unter Ungewissheit wird in der Entscheidungstheorie eine Entscheidungssituation bezeichnet, bei denen zwar die Alternativen, die möglichen Umweltzustände und die Ergebnisse bei Wahl einer bestimmten Alternative und Eintritt eines bestimmten Umweltzustandes bekannt sind, in denen aber die Eintrittswahrscheinlichkeiten der Umweltzustände unbekannt sind. Diese werden manchmal auch Entscheidungen bei objektiver Unsicherheit genannt.

Inhaltsverzeichnis

[Bearbeiten] Allgemeines

Entscheidung unter Ungewissheit ist in der Entscheidungstheorie ein Unterfall der Entscheidung unter Unsicherheit. Entscheidungen unter Ungewissheit unterscheiden sich von Entscheidungen unter Risiko dadurch, dass bei letzteren die Wahrscheinlichkeiten für das Eintreten bestimmter Umweltzustände als bekannt vorausgesetzt werden oder zumindest durch eine Schätzung zugeordnet werden können.

Die Entscheidungssituation bei Entscheidungen unter Ungewissheit kann durch eine Ergebnismatrix dargestellt werden. Der Entscheider hat die Wahl zwischen verschiedenen Alternativen ai, die in Abhängigkeit der möglichen Umweltzustände sj verschiedene Ergebnisse eij zur Folge haben. Allerdings weiß der Entscheider vorher nicht, mit welcher Wahrscheinlichkeit die Umweltzustände und damit die Ergebnisse eintreffen.

[Bearbeiten] Entscheidungsregeln

[Bearbeiten] Beispielhafte Entscheidungssituation

Beispiel: 100 € sollen für ein Jahr angelegt werden. Zur Wahl stehen: eine Aktie (a1) oder der Sparstrumpf, der keine Zinsen abwirft (a2). Die möglichen Umweltzustände sind: Der Aktienkurs steigt (s1), er sinkt (s2) oder er bleibt gleich (s3).

Die Ergebnismatrix sieht dann zum Beispiel wie folgt aus:
s1 s2 s3
a1 120 80 100
a2 100 100 100

Entscheidungen unter Ungewissheit können rational nach unterschiedlichen Regeln gefällt werden:


[Bearbeiten] Maximin-Regel

Die Maximin-Regel, die nach Abraham Wald auch Wald-Regel genannt wird, ist sehr pessimistisch, es wird hierbei nur das jeweils ungünstigste Ereignis betrachtet, welches bei Wahl einer bestimmten Alternative i in den möglichen Umweltzuständen eintreten kann. Die Alternativen werden nur anhand dieses jeweils schlechtesten Ergebnisses (das jeweils bei verschiedenen Umweltzuständen eintreten kann) verglichen, alle anderen möglichen Ergebnisse einer Alternative werden nicht betrachtet.

\max_i:\varphi_{ai}=\min_j e_{ij}

Im vorliegenden Beispiel wählt der Entscheider den Sparstrumpf (Alternative 2), da e12 = 80 kleiner als e22 = 100.

[Bearbeiten] Maximax-Regel

Die MaxiMax-Regel ist sehr optimistisch, hier wird jede Alternative nur anhand des Ergebnisses, das beim jeweils für diese Alternative günstigsten Umweltzustandes eintreten kann, beurteilt.

\max_i:\varphi_{ai}=\max_j e_{ij}

Im vorliegenden Beispiel wählt der Entscheider die Aktie (Alternative 1), da e11 = 120 größer als e21 = 100.


[Bearbeiten] Kritik an Maximin und Maximax Regel

Beide vorliegenden Regeln berücksichtigen nicht alle möglichen Ergebnisse einer Handlungsalternative, sondern greifen sich nur jeweils das beste (Maximax) oder das schlechteste (Maximin) Ergebnis einer Alternative heraus. Dies kann zu unerwünschten Ergebnissen führen, wie die folgenden Beispiele zeigen.

s1 s2 s3 s... s99 s100
a1 0 0 0 0 0 120
a2 119 119 119 119 119 119

Nach der Maximax-Regel würde hier die Alternative a1 gewählt, da nur das Ergebnis im günstigsten Umweltzustand s100 also e1;100 = 120 betrachtet wird, was größer als 119 ist. Die in allen anderen Umweltzuständen eintretende Auszahlung von Null bei Alternative a1 würde nicht berücksichtigt.


s1 s2 s3 s... s99 s100
a1 120 120 120 120 120 99
a2 100 100 100 100 100 100

Nach der Maximin-Regel würde hier die Alternative a2 gewählt, da nur das jeweils im ungünstigsten Umweltzustand eintretende Ergebnis betrachtet wird, also für die Alternative a1 das Ergebnis e1;100 = 99 und bei Alternative a2 100. Die in allen anderen Umweltzuständen eintretende Auszahlung von 120 bei Alternative a1 würde nicht berücksichtigt.


[Bearbeiten] Hurwicz-Regel

Die Hurwicz-Regel erlaubt Kompromisse zwischen pessimistischen und optimistischen Entscheidungsregeln, weil der Entscheidungsträger dabei seine persönliche und subjektive Einstellung durch den sogenannten Optimismusparameter λ (mit 0<=λ<=1) zum Ausdruck bringen kann.

\max_i:\varphi_{ai}=\lambda \cdot \max_j e_{ij}+(1-\lambda)\min_j e_{ij}

Im vorliegenden Beispiel wählt der Entscheider für λ > 0,5 die Aktie und für λ < 0,5 den Sparstrumpf.

Auch die Hurwicz-Regel betrachtet nicht alle möglichen Ergebnisse, sondern bewertet die Alternativen anhand eines gewichteten Mittelwerts ihres bestmöglichen und ihres schlechtmöglichsten Ergebnisses. Problematisch ist bei ihr weiterhin, dass die Wahl des Optimismusparameters stark stimmungsabhängig schwanken kann.

Beispiel:

bei λ = 0,3 würde man sich also für die Alternative a2 entscheiden.

s1 s2 s3 HurwiczRegel
a1 120 80 100 (120 x 0,3 + 80 x 0,7) = 92
a2 100 100 100 (100 x 0,3 + 100 x 0,7) = 100

[Bearbeiten] Laplace-Regel

Die Laplace-Regel: Man nimmt an, dass die Eintrittswahrscheinlichkeiten der möglichen Ergebnisse einer Wahlmöglichkeit gleich sind. Die Wahlmöglichkeit, die dann das beste Ergebnis verspricht, wird ausgewählt, d.h. es wird diejenige Alternative gewählt, deren Erwartungswert maximal ist:

\max_i:\varphi_{ai}=\frac{1}{n}\sum_j e_{ij}

Die Laplace-Regel beruht auf folgender Annahme: Da keine Eintrittswahrscheinlichkeiten bezüglich der Umweltzustände bekannt sind, gibt es keinen Grund, anzunehmen, dass ein Umweltzustand wahrscheinlicher sei als ein anderer, daher müsse man von Gleichverteilung der Eintrittswahrscheinlichkeiten ausgehen. Damit berücksichtigt die Laplace-Regel sämtliche Umweltzustände bei der Bewertung der Alternativen. Im vorliegenden Beispiel ist der Entscheider indifferent zwischen der Aktie und dem Sparstrumpf.

[Bearbeiten] Savage-Niehans-Regel

Die Savage-Niehans-Regel: die Beurteilung der Alternativen basieren dabei nicht auf der unmittelbaren Grundlage der Ergebnisse, sondern aufgrund entsprechender Bedauernswerte. Man wählt diejenige Alternative, welche das potentielle Bedauern minimiert (Regel des kleinsten Bedauerns), auch Minimax-Regret-Regel genannt.

Im Beispiel: Wenn Umweltzustand 1 eintritt (Aktie steigt), dann hätte man bei Wahl des Sparstrumpfes 20 verloren (Opportunitätskosten). Wenn Umweltzustand 2 eintritt (Aktie sinkt), dann hätte man bei Wahl der Aktie 20 verloren. Bei Umweltzustand 3 ist es egal, was ich gewählt hätte. Die Ergebnismatrix sieht dann wie folgt aus:

s1 s2 s3
a1 0 20 0
a2 20 0 0

Zur Auswahl der besten Alternative muss man zeilenweise den größten Wert suchen (maximales Bedauern) und dann die Alternative (Zeile) wählen, die den kleinsten Wert aufweist (maximales Bedauern minimieren).

[Bearbeiten] Krelle-Regel

Eine weitere Entscheidungsregel wurde von Wilhelm Krelle vorgeschlagen. Sie beruht darauf, dass alle mit einer Aktion ai verknüpften Nutzenwerte ui1, ui2 ,... ,uin mit einer für den Entscheidungsträger relevanten Unsicherheitspräferenzfunktion ω transformiert werden und anschließend addiert werden.

\Phi(a_i)=\sum^n_{j=1}\omega(u_{ij})

Die beste Alternative ist nun jene mit dem größten Gütemaß.

[Bearbeiten] Literatur

  • v. Zwehl, W., Entscheidungsregeln, in: Handwörterbuch der Betriebswirtschaft, Teilband 1, 5. Aufl., Schäffer-Poeschel, 1993
  • Bamberg, G., Coenenberg A., Betriebswirtschaftliche Entscheidungslehre, 11. Auflage, Verlag Vahlen, 2002
Andere Sprachen
Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu