Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Web Analytics
Cookie Policy Terms and Conditions Euler-Maruyama-Verfahren - Wikipedia

Euler-Maruyama-Verfahren

aus Wikipedia, der freien Enzyklopädie

Das Euler-Maruyama-Verfahren, oft auch Euler-Maruyama-Schema oder stochastisches Euler-Schema genannt, ist das einfachste Verfahren zur numerischen Lösung von stochastischen Differentialgleichungen. Es wurde erstmals in den 1950er-Jahren durch den japanischen Mathematiker Gisiro Maruyama untersucht und basiert auf dem von Leonard Euler stammenden expliziten Euler-Verfahren zur Lösung gewöhnlicher (deterministischer) Differentialgleichungen.

Während das explizite Euler-Verfahren seit seiner Erfindung stetig verbessert und weiterentwickelt wurde (implizites Euler-Verfahren, Runge-Kutta-Verfahren, Mehrschrittverfahren) und selbst dadurch an praktischer Bedeutung verloren hat, ist Euler-Maruyama mangels entsprechender Alternativen noch immer das in der Praxis dominierende Verfahren.

Inhaltsverzeichnis

[Bearbeiten] Formulierung

Gegeben sei ein Wiener-Prozess (W_t),\;t \ge 0 sowie dazu folgendes stochastisches Anfangswertproblem (S-AWP):

dS_t = a(t,S_t)dt + b(t,S_t)dW_t, \;\;S_0=A.

Die Idee von Maruyama besteht nun darin, nicht nur (wie bei Euler) die Zeitachse in ein Gitter \{ i\Delta t, \; i \in \N_0\}zu unterteilen, sondern diese Unterteilung auch in der Wahrscheinlichkeitsachse vorzunehmen: dazu definiert man

\Delta W_i :=W_{i \Delta t}-W_{(i-1)\Delta t}, \; i \in \N.

Auf diesem Gitter berechnet sich die Approximation \hat{S} von S folgendermaßen:

\hat{S}_0=A, \;\;\hat{S}_{i \Delta t} = a((i-1)\Delta t,\hat{S}_{(i-1)\Delta t}) \Delta t + b((i-1)\Delta t,\hat{S}_{(i-1)\Delta t}) \Delta W_i.

[Bearbeiten] Konvergenz des Verfahrens

Das wichtigste theoretische Resultat bezüglich des Maruyama-Schemas beschreibt dessen starke Konvergenz (oder stochastische Konvergenz) gegen die gesuchte Lösung S: eine Folge von stochastischen Prozessen (S_t^{(i)}),\;0 \le t \le T, \;i \in \N auf einem gemeinsamen Wahrscheinlichkeitsraum konvergiert definitionsgemäß stark mit Ordnung q gegen einen Prozess (S_t), \;0 \le t \le T, wenn für eine Konstante c gilt:

E(|S_t^{(i)}-S_t|) \le  c n^{-q} \;\;\forall t \in [0,T].

Im Falle des Maruyama-Schemas kann nun gezeigt werden: die Diskretisierung (\hat{S}_t) konvergiert für \Delta t = \frac{1}{n} \to 0 stark mit Ordnung \frac{1}{2} gegen die Lösung S des S-AWP, wenn für alle reellen Zahlen x und alle positiven s,t die Folgende Schranke gilt:

|a(s,x)-a(t,x)| + |b(s,x)-b(t,x)| \le K(1+|x|)\sqrt{(|t-s|)}.

Von schwacher oder Verteilungskonvergenz mit Ordnung q spricht man hingegen, wenn für eine Konstante c gilt:

|E(f(S_t^{(i)}))-E(f(S_t))| \le  c n^{-q} \;\;\forall t \in [0,T]

für alle Funktionen f, die mindestens 2q+2-mal stetig differenzierbar sind und deren sämtliche Ableitungen durch Polynome beschränkt sind. Dies ist bei Maruyama dann der Fall, wenn die Funktionen a und b diese Bedingung ebenfalls erfüllen. Für hinreichend glatte Funktionen a und b kann das Euler-Maruyama also beliebig hohe schwache Konvergenzordnung erreichen, jedoch ist dabei nichts über die Konstanten c ausgesagt (diese können analog zur Konvergenzordnung gegen Unendlich gehen.)

[Bearbeiten] Bemerkungen

  • Es gibt auch Lösungsverfahren höherer starker Ordnung als das Euler-Maruyama-Verfahren, etwa das Milstein-Verfahren, das meist Ordnung 1 erreicht. Diese Verfahren sind aber numerisch aufwändiger und resultieren nicht immer in einer schnelleren Konvergenz.
  • Die oben angeführte Bedingung für die starke Konvergenz mit Ordnung 0.5 ist nur wenig strenger als die Bedingung an a und b, die die Existenz der Lösung S sicherstellt. Sie ist also beinahe immer erfüllt.
  • An starker Konvergenz ist man in der Praxis nur sehr selten interessiert, da zumeist nicht eine spezielle Lösung zu einem speziellen Wiener-Prozess gesucht wird, sondern Vielmehr eine Stichprobe aus der Wahrscheinlichkeitsverteilung des Prozesses.
  • Ein Implizites Maruyama-Schema als Analogon zum impliziten Euler-Verfahren ist nicht möglich; dies liegt an der Definition des (stochastischen) Ito-Integrals, über das stochastische Differentialgleichungen definiert sind und das Funktionen immer am Anfang eines Intervalls auswertet (siehe dort). Implizite Verfahren konvergieren also hier gegen teilweise völlig falsche Ergebnisse.
  • Die übliche Simulation einer Brownschen Bewegung durch einen Gaußschen Random Walk kann als Anwendung des Euler-Maruyama-Schemas auf die triviale Differentialgleichung dS_t =1 dW_t, \;\;S_0=0 interpretiert werden.

[Bearbeiten] Literatur

  • Paul Glasserman: Monte Carlo Methods in Financial Engineering, Springer 2003, ISBN 0-387-00451-3
Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu