Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Web Analytics
Cookie Policy Terms and Conditions Andrew Wiles - Wikipedia, the free encyclopedia

Andrew Wiles

From Wikipedia, the free encyclopedia

Andrew Wiles
Sir Andrew John Wiles
Sir Andrew John Wiles
Born April 11, 1953
Cambridge, England
Residence United Kingdom, U.S.
Nationality British - American
Field Mathematician
Institution Princeton University
Alma mater Oxford University
Cambridge University
Academic advisor John Coates
Notable students Manjul Bhargava

Brian Conrad
Karl Rubin
Chris Skinner

Richard Taylor
Known for Solving Fermat's Last Theorem
Notable prizes Wolf Prize (1995)
Royal Medal (1996)
Andrew Wiles should not be confused with André Weil, another famous mathematician who, like Wiles, did important work in the area of elliptic curves.

Sir Andrew John Wiles (born April 11, 1953) is a British-American research mathematician at Princeton University, specializing in number theory. He attended The Leys School, Cambridge and then earned his BA degree from Merton College, Oxford University in 1974 and Ph.D. from Clare College, Cambridge University in 1980. His graduate research was guided by John Coates beginning in the summer of 1975. Together they worked on the arithmetic of elliptic curves with complex multiplication by the methods of Iwasawa theory. He further worked with Barry Mazur on the main conjecture of Iwasawa theory over \mathbb Q, and soon afterwards generalized this result to totally real fields. His most famous mathematical result is that all rational semistable elliptic curves are modular which, in particular, implies Fermat's Last Theorem.

Contents

[edit] Solution of Fermat's Last Theorem

Andrew Wiles was introduced to Fermat's Last Theorem at the age of ten. He tried to prove the theorem using textbook methods and later studied the work of mathematicians who had tried to prove it. When he began his graduate studies he stopped trying to prove it and began studying elliptic curves under the supervision of John Coates.

In the 1950s and 1960s a connection between elliptic curves and modular forms was conjectured by the Japanese mathematician Goro Shimura based on some ideas that Yutaka Taniyama posed. In the West it became well known through a paper by André Weil. With Weil giving conceptual evidence for it, it is sometimes called the Shimura-Taniyama-Weil conjecture. It states that every rational elliptic curve is modular. The full conjecture was proven by Christophe Breuil, Brian Conrad, Fred Diamond, and Richard Taylor in 1998 using many of the methods that Andrew Wiles used in his 1995 published papers.

Fermat's Last Theorem states that no nontrivial integer solutions exist for the equation: xn + yn = zn if n is an integer greater than two.
____________________________________
The bridge between Fermat and Taniyama
If p is an odd prime and a, b, and c are positive integers such that ap+bp=cp, then a corresponding equation y2 = x(x - ap)(x + bp) defines a hypothetical elliptic curve, called the Frey curve, which must exist if there is a counterexample to Fermat's Last Theorem. Following on work by Yves Hellegouarch who first considered this curve, Frey pointed out that if such a curve existed it had peculiar properties, and suggested in particular that it might not be modular.

A connection between Taniyama-Shimura and Fermat was made by Ken Ribet, following on work by Barry Mazur and Jean-Pierre Serre, with his proof of the epsilon conjecture showing that Frey's idea that the Frey curve could not be modular was correct. In particular, this showed that a proof of the semistable case of the Taniyama-Shimura conjecture would imply Fermat's Last Theorem. Wiles made the decision that he would work exclusively on the Taniyama-Shimura conjecture shortly after he had learned that Ribet had proven the epsilon conjecture in 1986. While many mathematicians thought the Taniyama-Shimura conjecture was inaccessible, Wiles resolved to follow that approach.

When Wiles first began studying Taniyama-Shimura, he would casually mention Fermat to people, but he found that doing so created too much interest. He wanted to be able to work on his problem in a concentrated fashion, and if people were expressing too much interest then he would not have been able to focus on his problem. Consequently he let only Nicholas Katz know what he was working on. Wiles did not do any research that was not related to Taniyama-Shimura, though of course he did continue in his teaching duties at Princeton university; continuing to attend seminars, lecture undergraduates, and give tutorials.

[edit] Cultural references

Wiles's work on Fermat's Last Theorem was commemorated (in fictional form) in the musical Fermat's Last Tango, written by Joanne Sydney Lessner and Joshua Rosenblum.[1]

Wiles and his work on Fermat's last theorem were mentioned in the Star Trek: Deep Space Nine episode "Facets". This also served as a correction for Fermat's last theorem being said to be unsolved in the earlier Star Trek: The Next Generation episode "The Royale".

Wiles is mentioned in Tom Lehrer's song "That's Mathematics"

[edit] Trivia

  • Wiles has an Erdős number of 3
  • He is married to Nada Canaan and has three children Clare, Kate and Olivia
  • He enjoys playing golf at Princeton University's course Springdale
  • Fellow, Royal Society (1989)

[edit] Awards

Wiles has been awarded several major prizes in mathematics:

[edit] Quotations

Wikiquote has a collection of quotations related to:
  • "I think I'll stop here." -- immediately after presenting the proof of Fermat's Last Theorem, Cambridge, 23 June 1993

[edit] References

[edit] External links

Preceded by
Elias M. Stein
Schock Prize in Mathematics
1995
Succeeded by
Mikio Sato
Persondata
NAME Wiles, Andrew
ALTERNATIVE NAMES
SHORT DESCRIPTION Mathematician
DATE OF BIRTH April 11, 1953
PLACE OF BIRTH Cambridge, England
DATE OF DEATH
PLACE OF DEATH
Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu