Pentágono
De Wikipedia, la enciclopedia libre
- Para la sede del Departamento de Defensa de los Estados Unidos, véase El Pentágono
En geometría, se denomina pentágono (del griego πεντάγωνον, πεντά cinco y γωνον lado) a un polígono de cinco lados.
Tabla de contenidos |
[editar] Propiedades geométricas del pentágono regular
Un pentágono regular es aquél que tiene todos sus lados y ángulos internos iguales. La suma de los ángulos internos de un pentágono vale (5-2)180° = 540°. Si los ángulos internos son todos iguales, cada uno vale 108°. Así, por ejemplo (véase la figura) en ángulo BCD vale 108°.
Como los segmentos DE, EA, y AB son iguales, los arcos que ellos determinan en la circunferencia circunscrita son iguales. Esto implica que los tres ángulos DCE, ECA y ACB son iguales. Como la suma de ellos es 108°, cada uno de ellos mide 36°.
[editar] Relación con la razón dorada
Veamos que la razón entre un segmento que una dos de sus vértices no consecutivos y uno de los lados del pentágono es la razón dorada, por ejemplo que
Por simetría, los segmentos CE y CA son iguales. Observamos que los triángulos ANF y CMF son semejantes. De la semejanza de sus lados tenemos que
Observemos que MC es la mitad de CE y que AN es la mitad de AB. Por otra parte, como el triángulo FCD es isósceles, tenemos que FC = CD. Así podemos escribir AF = AC - FC = CE - CD. Por tanto
Sustituyendo CE/CD por φ tenemos
en otras palabras φ − 1 = 1 / φ. Esta ecuación describe la razón dorada. φ es el único número positivo que cuando le restamos la unidad, obtenemos su inverso.
De la discusión anterior se desprende: Si en un triángulo isósceles, el ángulo opuesto a la base vale 108°, la razón de la base del triángulo y uno de los otros lados es la razón dorada.
[editar] Algunas consideraciones sobre triángulos
Consideremos un pentágono (regular) y la circunferencia circunscrita a dicho pentágono. Tracemos la perpendicular por el centro de la circunferncia al lado DA del pentágono y sea M la intersección de esta perpendicular con la circunferencia El ángulo AOB mide 360°/5=72° y el ángulo AOM es su mitad, es decir 36°. El ángulo MOB, suma de estos dos vale 108° y como el triángulo AOB es isósceles tenemos que
- La razón entre el segmento MB y el radio OM de la circunferencia es la razón dorada
Así, sea P la intersección de las rectas OA y MB. El triángulo PMO es isósceles, y la razón entre el radio OM y el segmento PM es la razón dorada. Finalmente, el triángulo OBP también es isósceles, con lo que PB = OB ( =OM). Tenemos
Lo anterior se puede interpretar como una demostración geométrica de la ecuacíon (1).
[editar] Trazado de un pentágono
Observando en la figura anterior que el triángulo AMP es isósceles podemos construir el pentágono, inscrito a una circunferencia c (véase la figura) de la siguiente manera.
Trazamos dos rectas perpendiculares por el centro O de la circunferencia (PD y OQ en la figura). Determinamos el punto medio M del segmento OQ y trazamos la recta PM. Con centro en M, trazamos la circunferencia de radio MO. Denotemos con R y S las intersecciones de esta circunferencia con la recta PM. Las circunferencias de centro en P y radios PR y PS determinan los vértices del pentágono regular.
- Uniendo los vértices del pentágono, se obtiene un pentagrama (estrella de 5 puntas) inscrito en él. En el centro, quedará otro pentágono regular, con lo que el proceso de inscribir pentagramas en los sucesivos pentágonos que se vayan generando, matemáticamente, no tiene fin.
- Al inscribir en un pentágono regular un pentagrama, se puede observar la razón áurea entre las longitudes de los segmentos resultantes.
[editar] Área de un pentágono
El área de un pentágono regular de lado a se puede obtener de la siguiente fórmula:
De forma general si tenemos que el radio de la circunferencia circunscrita es ru
o también:
[editar] Perímetro
Siempre que supongamos que el pentágono tiene lado a:
O también:
[editar] Fórmula para calcular los ángulos interiores
La suma de todos los ángulos interiores de un pentágono suma 540°, y existe una fórmula general para calcular los ángulos interiores de cualquier polígono regular (en el caso del pentágono n = 5):
El ángulo entre dos lados de un pentágono se puede calcular mediante la siguiente fórmula, siempre que se trate de un polígono regular:
[editar] Pentagrama
Se forma un pentagrama desde un pentágono extendiendo un segmento entre todos los pares de vértices no adyacentes. La proporción entre los lados del pentágono y la longitud de las líneas del pentagrama tiene un factor de φ + 1, o por el contrario 2 - φ, donde φ = (1+√5)/2, es la famosa razón dorada. Esta figura tiene otras proporciones relacionadas indirectamente con la razón dorada.
[editar] Algunas aplicaciones trigonométricas
[editar] Véase también
- Una posibilidad de poder ver pentágonos exactos mediante SVG se puede encontrar en Wikimedia Commons
[editar] Enlaces externos
- Commons alberga contenido multimedia sobre pentágonos.