Lujuusoppi
Wikipedia
Lujuusoppi ja lujuuslaskenta on jatkuvan aineen mekaniikkaan kuuluva fysiikan ala, jossa tutkitaan mekaanisten rakenteiden käyttäytymistä ulkoisten ja sisäisten kuormien vaikuttaessa niihin. Yleensä lujuusopin alaan luetaan kuuluvaksi myös esimerkiksi värähtelymekaniikka, materiaalin väsyminen ja murtumismekaniikka. Englanniksi käytetään termejä strength of materials ja solid mechanics.
Suppeassa mielessä lujuusopin piiriin katsotaan kuuluviksi ainakin rakenteiden muodonmuutokset ja tästä suoraan saatavat rakenteen venymä ja edelleen jännitys.
Sisällysluettelo |
[muokkaa] Yleinen muodonmuutostila
Rakenteen muodonmuutoksilla tarkoitetaan sen muodon vääristymistä, mutta myös sen paikan ja/tai asennon muutosta. Muodonmuutoksen voi aiheuttaa mekaaninen kuorma, mutta myös esimerkiksi lämpökuorma voi niitä aiheuttaa.
Muodonmuutokset voidaan jakaa jäykän kappaleen liikkeisiin ja muodon vääristymiin. Yleensä kappaleen kokonaismuodonmuutos on yhdistelmä näsitä molemmista.
Jäykän kappaleen liikkeessä kappale liikkuu (translaatio) tai pyörii (rotaatio) muuttamatta muotoaan. Jäykän kappaleen liikkeessä kaikki kappaleen pisteet pysyvät samalla kohtaa toistensa suhteen samassa, liikkuvassa koordinaatistossa (siirtymävektorien derivaatta on kaikkialla kappaleessa nolla). Tämän johdosta jäykän kappaleen liike ei aiheuta siihen myöskään venymiä tai jännityksiä. Esimerkiksi ilmaan heitetty kivi on likimain jäykkä kappale ilmalentonsa aikana (sen paikka ja asento muuttuu, mutta muoto säilyy).
Muodon vääristymisessä kappaleen pisteet liikkuvat toistensa suhteen siten, että sen muoto muuttuu. Vääristyminen voidaan jakaa kahteen osaan:
- Tilavuuden muutos (dilataatio), jossa kappaleen tilavuusalkion tilavuus muuttuu. Esimerkiksi pesusienen puristaminen kasaan joka suunnalta samassa suhteessa vastaa likimain tätä tapausta.
- Leikkautuminen. Esimerkiksi maassa kiinni olevan kumipalan yläpinnan työntäminen vaakatasossa aiheuttaa kumipalan leikkautumista.
[muokkaa] Venymä
Venymä mittaa tilavuusalkion muodon vääristymisen suuruutta alkuperäiseen tilanteeseen verrattuna. Näin ollen jäykän kappaleen liikkeet eivät vaikuta venymiin. Venymä on materiaalista riippumaton, dimensioton vektorisuure ([m/m]), joka saadaan pienten siirtymien tapauksessa ottamalla derivaatta muodonmuutostilasta eri suunnissa käytettävien koordinaattiakselien suhteen. Näin saatava, kolmiulotteisessa tapauksessa dimensioiltaan 3x3 muodonmuutosmatriisi ilmaisee yksikäsitteisesti tilavuusalkion vääristymän. Siitä voidaan johtaa esimerkiksi paikallinen rakenteen tilavuuden muutos, leikkautuminen, venymät ja leikkautumat halutuissa suunnissa ja esimerkiksi päävenymät. Päävenymät saadaan kiertämällä tarkastelukoordinaatistoa siten, että kyseisessä suunnassa leikkautumat häviävät.
[muokkaa] Venymän ja jännityksen välinen yhteys
Tämä nk. konstitutiivinen yhteys liittää toisiinsa venymä- ja jännitysvektorit. Jos yhteys on lineaari (materiaalin elastisuus), on kyseessä (yleistetty) Hooken laki. Tällöin saadaan jännitysvektori suoraan kertomalla venymävektori kimmomatriisilla ja edelleen esimerkikiksi ulkoiset kuormat selvittämällä kuormien tasapainon toteuttavat tukireaktiot kappaleen reunoilla. Ottamalla kimmomatriisista käänteismatriisi, nk. joustomatriisi ja kertomalla tällä jännitysvektori, voidaan puolestaan selvittää paikalliset venymät. Ottamalla venymistä integraali rakenteen yli voidaan puolestaan selvittää koko rakenteen muodonmuutostila. Ratkaisuun tarvitaan myös yhteensopivuus l. kompabiliteettiehtoa, joilla huomioidaan se, että venymät eivät voi olla täysin mielivaltaisia, vaan eri venymäkomponenttien on oltava keskenään yhteensopivia.
Yleisessä tapauksessa venymän ja jännityksen välinen yhteys ei kuitenkaan ole lineaari tai edes yksikäsitteinen. Esimerkiksi plastinen materiaali myötää tietyn materiaalista riippuvan jännitystason jälkeen, ja kuorman poistuessa rakenteeseen jää nk jäännösjännityksiä. Pysyvillä venymillä tarkoitetaan useimmiten tässä yhteydessä rakenteeseen jääviä muodonmuutoksia, jotka eivät poistu kuorman poistuessa. Esimerkiksi kestomuovit ovat usein hyvin plastisia.
Materiaali voi myös murtua. Haurailla aineilla tämä tapahtuu lähes samalla venymällä kuin myötäminen.
Virumisella ymmärretään venymien kasvamista ajan mukana vakiokuormallakin.
On huomattavasti muitakin mahdollisuuksia kuinka materiaalit voivat kuormitettuina käyttäytyä. Mm. materiaalien mekaanista käyttäytymistä tutkii kokonaan oma tieteenalansa, materiaalioppi.
[muokkaa] Lujuushypoteesi
Rakenteen paikallinen jännitys- ja venymätila ovat siis vektorisuureita. Materiaalin lujuuteen liittyvät lujuusarvot, kuten esimerkiksi materiaalin myötämisen aiheuttava jännitys (myötöraja) tai murtumisen aiheuttava murtoraja ilmaistaan kuitenkin usein vain yhdellä, esimerkiksi vetosauvalla tehtyjen vetokokeiden perusteella saadulla materiaaliarvolla. Lujuushypoteeseillä todellisesta jännitys- (tai venymä)vektorista muodostetaan skalaari vertailujännitys, jota verrataan vetokokeen tulokseen. Jos vertailujännitys ylittää kyseisen materiaaliarvon, pettämisen oletetaan tapahtuvan.
Yleisimpiä jännityshypoteesejä ovat maksimipääjännitys-, maksimipäävenymä-, maksimileikkausjännitys (Tresca), vakiomuodonmuutosenergia- ja vakiomuodonvääristymisenergia (von Mises)-hypoteesit. Nykyään useimmiten käytetään von Misesin tai Trescan kriteeriä sitkeille aineille, kuten teräs. Hauraille aineille (valurauta, betoni) käytetään myös pääjännitys- ja päävenymähypoteesejä.
Komposiittimateriaaleilla, joiden lujuus vaihtelee kuormitussuunnasta riippuen, on omia lujuushypoteesejään.
Keskeisiä käsitteitä ovat:
- jänneväli ja poikkipinta-ala
- kimmokerroin (E, yksikkö N/m²)
- normaalivoima (yksikkö N)
- leikkausvoima (yksikkö N)
- taivutusmomentti (M, yksikkö Nm)
- taivutusvastus (W, yksikkö m³)
- jäyhyysmomentti (=jäyhyys; I, yksikkö m4)
- jännitys (σ, yksikkö N/m²)
- kuormitustiheys (yksikkönä N/m)
- taipuma
- siirtymä
- venymä (myötymä)
- painopiste
- nurjahdus, lommahdus