Carré magique (mathématiques)
Un article de Wikipédia, l'encyclopédie libre.
- Voir également la page d'homonymie Carré magique
En mathématiques, un carré magique d'ordre n est composé de n2 nombres entiers généralement distincts, écrits sous la forme d'un tableau carré. Ces nombres sont disposés de manière à ce que leurs sommes sur chaque rangée, sur chaque colonne et sur chaque diagonale soient égales. Un carré magique est dit normal s'il est rempli avec les nombres entiers compris entre 1 et n2 (inclus).
Il existe des dispositions magiques pour tout carré d'ordre n ≥ 1, sauf pour n = 2. Le carré d'ordre 1 est trivial, n'importe quel nombre indiqué dans l'unique case permet de satisfaire les règles. Le plus petit cas non trivial est le carré d'ordre 3 :
![\begin{bmatrix} 6 & 7 & 2 \\ 1 & 5 & 9 \\ 8 & 3 & 4 \\ \end{bmatrix}](../../../math/e/e/2/ee2a231af6139217dbe490bd3455709f.png)
La somme obtenue sur chaque ligne, colonne ou diagonale est appelée constante magique ou somme magique. La constante magique d'un carré magique normal dépend uniquement de n et vaut :
Un exemple typique de carré magique est le jeu du Sudoku, utilisant des carrés magiques de dimension 9 dans lequel des contraintes supplémentaires sont ajoutées (présence de tous les chiffres de 1 à 9, et obtention d'un carré magique dans chaque sous groupe de 9 cases)
Pour les carrés magiques normaux d'ordre n = 3, 4, 5, 6, 7, 8, … la constante magique vaut ainsi : 15, 34, 65, 111, 175, 260, ….
Sommaire |
[modifier] Méthodes de construction
d'ordre impair
Il est assez aisé de créer des carrés magiques d'ordre impair.
Placer le 1 dans la case qui se trouve sous la case du milieu du carré. Décaler d'une case vers la droite puis d'une case vers le bas pour le 2, et ainsi de suite pour le 3, puis le 4, etc. Si une case est déjà occupée, il faut revenir au nombre précédent, ne pas décaler à droite puis en bas, mais descendre de 2 cases. Précision : quand on arrive au bord du carré, on continue du côté opposé (en haut ou à gauche), un peu comme si le carré était torique.
d'ordre pair
Créer des carrés magiques d’ordre pair est plus difficile. Le nouveau jeu mathématique "medjig" (auteur: Willem Barink, éditeur: Philos-Spiele, premier édition 2006), donne une possibilité générale et joueuse de créer des carrés d’ordre pair >4. Le puzzle medjig se compose de 18 pièces carrées, divisées en quatre quadrants sur lesquels il y a les nombres 0, 1, 2 et 3 en points. Chaque suite consécutive est présente trois fois. Le but du jeu est de créer des carrés 3 x 3 dans lesquels chaque rang (horizontal, vertical et diagonal) donne la somme de 9.
La méthode medjig s’exécute ainsi. Arrangez un "carré medjig" 3 x 3 (pour plus de facilité on peut se servir de toute la collection). Et puis prenez le carré magique 3 x 3 classique, divisez les cases en quatre quadrants, et remplissez les quadrants avec les nombres originaux et ses trois nombres derivés modulo-9 jusqu'à 36, suivant l’arrangement du carré medjig. En faisant ainsi, la case originale avec le nombre 8 produit les quadrants avec les nombres 8 (= 8 + 0x9), 17 (= 8 + 1x9), 26 (= 8 + 2x9) et 35 (= 8 + 3x9). Le nombre 1 produit 1, 10, 19 et 28. Voyez l’illustration suivante.
|
|
|
Pour créer un carré magique d’ordre 8 il faut d’abord créer un carré medjig 4 x 4 (la somme 12). Et puis élargir par exemple le carré magique 4 x 4 de Dürer modulo-16 jusqu'à 64. Pour créer un carré d’ordre 10 il faut deux jeux de medjig. Pour l’ordre 12 on peut doubler horizontalement et verticalement un carré medjig 3 x 3, et élargir le carré magique d’ordre 6. Ainsi que l’ordre 16.
[modifier] Exemples
Carré d'ordre 4
Ordre 4 | |||
---|---|---|---|
16 | 3 | 2 | 13 |
5 | 10 | 11 | 8 |
9 | 6 | 7 | 12 |
4 | 15 | 14 | 1 |
Carré d'ordre 5
17 | 24 | 1 | 8 | 15 |
23 | 5 | 7 | 14 | 16 |
4 | 6 | 13 | 20 | 22 |
10 | 12 | 19 | 21 | 3 |
11 | 18 | 25 | 2 | 9 |
Carré d'ordre 7
30 | 39 | 48 | 1 | 10 | 19 | 28 |
38 | 47 | 7 | 9 | 18 | 27 | 29 |
46 | 6 | 8 | 17 | 26 | 35 | 37 |
5 | 14 | 16 | 25 | 34 | 36 | 45 |
13 | 15 | 24 | 33 | 42 | 44 | 4 |
21 | 23 | 32 | 41 | 43 | 3 | 12 |
22 | 31 | 40 | 49 | 2 | 11 | 20 |
Carré d'ordre 8
52 | 61 | 4 | 13 | 20 | 29 | 36 | 45 |
14 | 3 | 62 | 51 | 46 | 35 | 30 | 19 |
53 | 60 | 5 | 12 | 21 | 28 | 37 | 44 |
11 | 6 | 59 | 54 | 43 | 38 | 27 | 22 |
55 | 58 | 7 | 10 | 23 | 26 | 39 | 42 |
9 | 8 | 57 | 56 | 41 | 40 | 25 | 24 |
50 | 63 | 2 | 15 | 18 | 31 | 34 | 47 |
16 | 1 | 64 | 49 | 48 | 33 | 32 | 17 |
Un autre carré d'ordre 8
1 | 8 | 53 | 52 | 45 | 44 | 25 | 32 |
64 | 57 | 12 | 13 | 20 | 21 | 40 | 33 |
2 | 7 | 54 | 51 | 46 | 43 | 26 | 31 |
63 | 58 | 11 | 14 | 19 | 22 | 39 | 34 |
3 | 6 | 55 | 50 | 47 | 42 | 27 | 30 |
62 | 59 | 10 | 15 | 18 | 23 | 38 | 35 |
4 | 5 | 56 | 49 | 48 | 41 | 28 | 29 |
61 | 60 | 9 | 16 | 17 | 24 | 37 | 36 |
[modifier] Historique
Le terme « carré magique » a été introduit pour la première fois dans la langue française par Simon de La Loubère. Il en parle dans son ouvrage Du Royaume de Siam, paru en 1691, où il expose également une nouvelle méthode de construction applicable aux carrés d'ordre impair.
[modifier] Curiosités
- Si l'on relie les nombres du carré magique dans l'ordre croissant, on obtient une figure symétrique (voir image ci-contre). Exception pour le carré magique de medjig plus haut, car il y a plusieurs fois certains nombres, par conséquent, on ne peut pas déterminer le tracé de la figure.
- La théorie des groupes a été utilisée pour trouver les carrés magiques d'un ordre donné à partir d'un de ceux-ci: voir [2] (en anglais).
[modifier] Bibliographie
- Carrés magiques, carrés latins et eulériens : histoire, théorie, pratique. Jacques Bouteloup, Éditions du Choix, 1991.ISBN 2-909028-02-x