New Immissions/Updates:
boundless - educate - edutalab - empatico - es-ebooks - es16 - fr16 - fsfiles - hesperian - solidaria - wikipediaforschools
- wikipediaforschoolses - wikipediaforschoolsfr - wikipediaforschoolspt - worldmap -

See also: Liber Liber - Libro Parlato - Liber Musica  - Manuzio -  Liber Liber ISO Files - Alphabetical Order - Multivolume ZIP Complete Archive - PDF Files - OGG Music Files -

PROJECT GUTENBERG HTML: Volume I - Volume II - Volume III - Volume IV - Volume V - Volume VI - Volume VII - Volume VIII - Volume IX

Ascolta ""Volevo solo fare un audiolibro"" su Spreaker.
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
幻方 - Wikipedia

幻方

维基百科,自由的百科全书

幻方,有时又称魔方,由一组排放在正方形中的整数组成,其每行、每列以及两条对角线上的数之和均相等。通常幻方由从1N2的连续整数组成,其中N为正方形的行或列的数目。因此N阶幻方有NN列,并且所填充的数为从1N2

幻方可以使用N阶方阵来表示,矩阵的每行、每列以及两条对角线的和都等于常数M2(N),如果填充数为1,2,\dots,N^2,那么有

M_2(N) = \frac{N(N^2+1)}{2}

目录

[编辑] 幻方简史

[编辑] 洛书

中国古典文献中记载了洛书传说公元前23世纪大禹治水之时,一只巨大的神出现于黄河支流洛水中,龟甲上有9种花点的图案,分别代表1,\dots,99个数,而3行、3列以及两对角线上各自的数之和均为15,世人称之为洛书中国汉朝的数术记遗中,称之为九宫算,又叫九宫图宋朝数学家杨辉把类似于九宫图的图形命名为纵横图

[编辑] 构造法

有三种幻方存在构造方法:奇数阶幻方、4M阶幻方和4M + 2阶幻方,其中M自然数2阶幻方不存在。幻方构造法主要有:连续摆数法、阶梯法(楼梯法)、奇偶数分开的菱形法、对称法、对角线法、比例放大法、斯特雷奇法、LUX法、拉伊尔法(基方、根方合成法)、镶边法、相乘法、幻方模式等。

[编辑] 奇数阶幻方构造法

Siamese方法(Kraitchik 1942年,pp. 148-149)是构造奇数阶幻方的一种方法,说明如下:

  • 1放置在第一行的中间或者最后一行的中间。
  • 顺序将2,3,\dots等数放在右上方格中。
  • 当右上方格出界的时候,则由另一边进入。
  • 当右上方格中已经填有数,则把数填入正下方的方格中。
  • 按照以上步骤直到填写完所有N2个方格。

(由于幻方的对称性,也可以把右上改为右下、左上以及左下等方位)

以下图5阶幻方为例,1填写在(1,3)(第一行第三列)的位置上;2应当填写在其右上方格即(0,4)中,由于(0,4)超出顶边界,所以从最底行进入,即(5,4)3填写在(5,4)的右上方格(4,5)中;4填写在(4,5)的右上方格(3,6)中,由于(3,6)超出右边界,所以从最左列进入,即(3,1)5填写在(3,1)的右上方格(2,2)中;6应该填写的方格(3,1)已经被1所占据,因此填写在(2,2)的正下方格(3,2)中;按照上面的步骤直到所有数填入。

\begin{bmatrix} 8 & 1 & 6 \\ 3 & 5 & 7 \\ 4 & 9 & 2 \\ \end{bmatrix} \begin{bmatrix} 17 & 24 & 1 & 8 & 15 \\ 23 & 5 & 7 & 14 & 16 \\ 4 & 6 & 13 & 20 & 22 \\ 10 & 12 & 19 & 21 & 3 \\ 11 & 18 & 25 & 2 & 9 \end{bmatrix} \begin{bmatrix} 37 & 48 & 59 & 70 & 81 & 2 & 13 & 24 & 35 \\ 36 & 38 & 49 & 60 & 71 & 73 & 3 & 14 & 25 \\ 26 & 28 & 39 & 50 & 61 & 72 & 74 & 4 & 15 \\ 16 & 27 & 29 & 40 & 51 & 62 & 64 & 75 & 5 \\ 6 & 17 & 19 & 30 & 41 & 52 & 63 & 65 & 76 \\ 77 & 7 & 18 & 20 & 31 & 42 & 53 & 55 & 66 \\ 67 & 78 & 8 & 10 & 21 & 32 & 43 & 54 & 56 \\ 57 & 68 & 79 & 9 & 11 & 22 & 33 & 44 & 46 \\ 47 & 58 & 69 & 80 & 1 & 12 & 23 & 34 & 45 \end{bmatrix}
3 5 9

[编辑] 偶数阶幻方构造法

[编辑] 4M阶幻方构造法

对于4M阶幻方一般都用对调法,制作起来很容易。如4阶幻方的排列法:
\begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \\ 13 & 14 & 15 & 16  \end{bmatrix}
按如上图排列好,再将非主副对角线上的各个数关于中心对调,既成下图:
\begin{bmatrix} 1 & 15 & 14 & 4 \\ 12 & 6 & 7 & 9 \\ 8 & 10 & 11 & 5 \\ 13 & 3 & 2 & 16  \end{bmatrix}

[编辑] 4M + 2阶幻方构造法

[编辑] 加边法

6阶为例子,先排出4阶的幻方,如上图,再将图中每一个数都加上8m + 2 = 10,有下图:
\begin{bmatrix} 11 & 25 & 24 & 14 \\ 22 & 16 & 17 & 19 \\ 18 & 20 & 21 & 15 \\ 23 & 13 & 12 & 26  \end{bmatrix}
在外围加上一圈格子,把1,2,3,\dots,8m+216m^2+8m+3,16m^2+8m+4,\dots,(4m+2)^2这些数安排在外圈格子内,但要使相对两数之和等于16m(m + 1) + 5。对于m = 1这些数是:1,2,3,4,5,6,7,8,9,1027,28,29,30,31,32,33,34,35,36
结果如下:
\begin{bmatrix} 1 & 9 & 34 & 33 & 32 & 2 \\ 6 & 11 & 25 & 24 & 14 & 31 \\ 10 & 22 & 16 & 17 & 19 & 27 \\ 30 & 18 & 20 & 21 & 15 & 7 \\ 29 & 23 & 13 & 12 & 26 & 8 \\ 35 & 28 & 3 & 4 & 5 & 36 \end{bmatrix}

[编辑] LUX法

在(4M+2)×(4M+2)個方格的適當格點上,先排出2M+1階的幻方。在首M+1行的格點,全部標上「L」,除了第M+1行中間的是標「U」;在第M+2行的格點,全部標上「U」,除了第M+2行中間的是標「L」;在餘下的M-1行的格點,全部標上「X」。將格點上的數乘以4,再減4,再按下面的規則加上1至4其中一個數,填入對應的格上:

 4 1    1 4    1 4
  L      U      X
 2 3    2 3    3 2

例子:

[ 68  65  96  93   4   1  32  29  60  57 ]
   17L     24L      1L      8L     15L   
[ 66  67  94  95   2   3  30  31  58  59 ]

[ 92  89  20  17  28  25  56  53  64  61 ]
   23L      5L      7L     14L     16L   
[ 90  91  18  19  26  27  54  55  62  63 ]

[ 16  13  24  21  52  49  80  77  88  85 ]
    4L      6L     13U     20L     22L   
[ 14  15  22  23  50  51  78  79  86  87 ]

[ 37  40  45  48  76  73  81  84  9   12 ]
   10U     12U     19L     21U      3U   
[ 38  39  46  47  74  75  82  83  10  11 ]

[ 41  44  69  72  97  100  5  8   33  36 ]
   11X     18X     25X      2X      9X   
[ 43  42  71  70  99  98   7  6   35  34 ]

[编辑] 参见

[编辑] 有用的参考书

  • 高治源,九宫图探秘,2004,香港天马图书有限公司
  • 张道鑫,素数幻方,2003,香港天马图书有限公司
  • 李杭强,趣味数学幻方,2002,香港天马图书有限公司
  • 林正禄,开拓智力的奇方——幻方,2001,香港天马图书有限公司

[编辑] 外部链接

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu