New Immissions/Updates:
boundless - educate - edutalab - empatico - es-ebooks - es16 - fr16 - fsfiles - hesperian - solidaria - wikipediaforschools
- wikipediaforschoolses - wikipediaforschoolsfr - wikipediaforschoolspt - worldmap -

See also: Liber Liber - Libro Parlato - Liber Musica  - Manuzio -  Liber Liber ISO Files - Alphabetical Order - Multivolume ZIP Complete Archive - PDF Files - OGG Music Files -

PROJECT GUTENBERG HTML: Volume I - Volume II - Volume III - Volume IV - Volume V - Volume VI - Volume VII - Volume VIII - Volume IX

Ascolta ""Volevo solo fare un audiolibro"" su Spreaker.
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Espace anti de Sitter - Wikipédia

Espace anti de Sitter

Un article de Wikipédia, l'encyclopédie libre.

En mathématiques et en physique, l'espace anti de Sitter n-dimensionnel, noté AdSn, est l'analogue Lorentzien de l'espace hyperbolique n-dimensionnel. Il est pourvu d'une symétrie maximale, et c'est une variété Lorentzienne avec une courbure négative constante.

Dans le language de la relativité générale, l'espace anti de Sitter est une solution de vide à l'équation de champ d'Einstein avec une constante cosmologique Λ négative.

L'espace anti de Sitter est la courbure analogue négative de l'espace de Sitter, nommée ainsi pour Willem de Sitter. Il est utilisé dans la correspondance AdS/CFT.

[modifier] Définitions et propriétés

L'espace anti de Sitter peut être défini comme une sous-variété de R2,n − 1 en codimension 1. Prenons l'espace R2,n − 1 avec la métrique standard :

ds^2 = -dx_0^2 -dx_1^2 +\sum_{i=2}^n dx_i^2.

L'espace anti de Sitter est la sous-variété décrite par l'hyperboloïde

-x_0^2 -x_1^2+ \sum_{i=2}^n x_i^2 = -\alpha^2

α est une sorte de constante non-nulle avec des dimensions de longueur. La métrique sur l'espace anti de Sitter est la métrique induite par la métrique ambiante. On eput vérifier qui la métrique induite n'est pas dégénérée et a la signature Lorentzienne.

L'espace anti de Sitter peut aussi être défini comme le quotient O(2,n − 1) / O(1,n − 1) de deux groupes orthogonaux indéfinis, ce qui montre que c'est un espace symmétrique non-Reimannien.

L'espace de Sitter n-dimensionnel a O(n − 1,2) comme groupe isométrique. Il n'est pas simplement connexe ; il est homéomorphe au produit S^1 \times R^{n-1}, donc son groupe fondamental est l'ensemble des nombres entiers, et il a une couverture universelle contractable. L'espace-temps anti de Sitter a des temps fermés comme des boucles, contrairement a sa couverture universelle qui n'en a pas. Certains auteurs utilisent l'espace anti de Sitter pour se réferer à la couverture universelle simplement connexe.

[modifier] L'espace anti de Sitter comme espace homogène et symmétrique

De la même manière que la sphère S^2=\frac{ O(3) }{ O(2) }, l'espace anti de Sitter peut être vu comme un quotient de deux groupesAdS_n=\frac{ O(2,n-1) }{ O(1,n-1) }. Cette formulation du quotient donne à AdSn une structure d'espace homogène. L'algèbre de Lie de O(1,n) est donné par les matrices

\mathcal{H}=  \begin{pmatrix}      \begin{matrix}        0&0\\        0&0      \end{matrix}                        &  \begin{pmatrix}                       \cdots 0\cdots\\                       \leftarrow v^t\rightarrow                           \end{pmatrix}\\     \begin{pmatrix}               \vdots & \uparrow\\          0    & v \\        \vdots & \downarrow     \end{pmatrix} &  B   \end{pmatrix},

B est une matrice diagonale symmétrique. Une complémentarité dans l'algèbre de Lie de \mathcal{G}=O(2,n) est

\mathcal{Q}=  \begin{pmatrix}      \begin{matrix}        0&a\\        -a&0      \end{matrix}                        &  \begin{pmatrix}                                           \leftarrow w^t\rightarrow \\                       \cdots 0\cdots\\                           \end{pmatrix}\\     \begin{pmatrix}              \uparrow   & \vdots\\           w      &  0\\       \downarrow & \vdots      \end{pmatrix} & 0   \end{pmatrix}.

Ces deux \mathcal{G}=\mathcal{H}\oplus\mathcal{Q} accomplis, la supputation explicite de la matrice montre que [\mathcal{H},\mathcal{Q}]\subseteq\mathcal{Q}, \quad [\mathcal{Q},\mathcal{Q}]\subseteq\mathcal{H}. Donc, l'espace anti de Sitter est un espace homogène.

[modifier] Voir aussi

Liste de tous les modèles cosmologiques
Atome primitif | Big Bang | Big Crunch | Big Rip | Classification de Bianchi | Cosmologie branaire | Cosmologie cordiste | Dimensions enroulées | Espace anti de Sitter | Espace de Sitter | Espace de Taub-NUT | Inflation cosmique | Modèle ΛCDM | Modèle cyclique | Modèle OCDM | Modèle SCDM | Modèle standard | Pré Big Bang | Théorie de l'état stationnaire | Univers d'Einstein | Univers de Friedmann-Lemaître-Robertson-Walker | Univers de Gödel | Univers de Milne | Univers de de Sitter | Univers ekpyrotique | Univers en tore bidimensionnel | Univers fractal | Univers hésitant | Univers mixmaster | Univers phénix
Modifier


Portail des mathématiques – Accédez aux articles de Wikipédia concernant les mathématiques.
Portail de la cosmologie - Accédez aux articles de Wikipédia concernant la cosmologie.
Autres langues

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu