גאומטריה אנליטית
מתוך ויקיפדיה, האנציקלופדיה החופשית
במתמטיקה, גאומטריה אנליטית היא ענף העוסק בחקר הגאומטריה באמצעות כלים אלגבריים. בענף זה משתמשים לרוב במערכת צירים קרטזית כדי לתאר באמצעות משוואות מרחבים, ישרים, עקומות, מעגלים וכדומה, בדו ממד ובתלת ממד.
את היסודות לגאומטריה האנליטית הניח רנה דקארט, שעל שמו נקראת מערכת צירים קרטזית והמכפלה הקרטזית, בשנת 1637. עבודתו סיפקה את הבסיס לחשבון האינפיניטסימלי שפותח בנפרד על ידי אייזק ניוטון וגוטפריד וילהלם לייבניץ. יש הרואים בפיתוח הגאומטריה האנליטית את תחילתה של המתמטיקה המודרנית.
תוכן עניינים |
[עריכה] גאומטריה אנליטית במישור
בגאומטריה האנליטית של המישור (הבנויה על מערכת צירים קרטזית) מיוצגת כל נקודה על ידי זוג סדור של מספרים ממשיים, כאשר האחד מציין את המרחק (האנכי) של הנקודה מציר ה-Y והשני את המרחק של הנקודה מציר ה-X.
החוזק של הגאומטריה האנליטית ביחס לגאומטריה האוקלידית, הוא באפשרות לתאר מושגים גאומטריים על ידי משוואות ופונקציות, ובכך לאפשר פתרון אלגברי לבעיה הגאומטרית.
[עריכה] מרחק בין נקודות
בבסיס התחום נמצאת הגדרת המרחק בין שתי נקודות, שמוגדרת לפי משפט פיתגורס:
[עריכה] קוים ישרים
קו ישר מוגדר להיות אוסף הנקודות שמקיימות משוואה מהצורה:
.
כאשר המשוואה מגדירה את כל המישור או אף נקודה, ולא קו ישר במובן הרגיל של המילה.
כאשר ניתן להציג את הקו הישר על ידי משוואה מהצורה
. משוואה זו נקראת המשוואה הקנונית של הישר (או המשוואה המפורשת של הישר). המספר m שבמשוואה נקרא שיפוע הישר, והוא מייצג את מספר היחידות שהישר עובר בציר ה־Y עבור כל יחידת אורך שהוא עובר בציר ה־X. ישרים בעלי שיפוע זהה הם ישרים מקבילים. שיפוע הישר המקביל לציר ה־X הוא 0, ושיפוע הישר המקביל לציר ה־Y אינו מוגדר ואי אפשר לייצג אותו באמצעות משוואה זו. המספר n שבמשוואה הוא נקודת חיתוך הישר עם ציר ה־Y.
המשוואה המפורשת של הישר היא יחידה – כלומר, אם נתונות שתי משוואות שונות, הן בהכרח מייצגות שני ישרים שונים, ולהפך. לעומת זאת, לכל ישר קיימות אינסוף משוואות רגילות המתארות אותו, כיוון שניתן להכפיל את המשוואה של ישר נתון בכל מספר ממשי שאינו אפס והמשוואה תוסיף ותתאר את אותו הישר.
[עריכה] מעגלים
המעגל לפי הגדרתו הגאומטרית, הוא אוסף כל הנקודות שמרחקן מנקודה מסוימת שווה למספר חיובי קבוע - רדיוס המעגל. הנקודה המסוימת נקראת מרכז המעגל. משוואתו של מעגל מוגדרת כך:
כאשר מרכז המעגל הוא הנקודה (a,b) ורדיוסו R.
כאשר מרכז המעגל נמצא בראשית הצירים - הנקודה , משוואת המעגל מקבלת את הצורה:
מעגל כזה נקרא מעגל קנוני, וקל לראות שניתן ליצור ממנו כל מעגל על ידי הזזה. כאשר רדיוס המעגל הקנוני הוא 1, המעגל נקרא מעגל היחידה. דרך נוחה להצגה פרמטרית של מעגל היחידה היא על ידי הנוסחה:
- (sin t , cos t) עבור
.
קיימות נוסחאות דומות גם לחתכי חרוט אחרים (פרבולה, היפרבולה ואליפסה).
[עריכה] הכללה למרחב ה-n ממדי
במרחב n-ממדי, מיוצגת כל נקודה על ידי וקטור n-ממדי מעל המספרים הממשיים. מישור עילי במרחב n-ממדי מוגדר על ידי על ידי כל הנקודות המיוצגות על ידי כל הקומבינציות הלינאריות של (n-1) וקטורים בלתי תלויים, המייצגים נקודות באותו מרחב. קו ישר מיוצג על ידי קבוצת כל הקומבינציות הלינאריות של שתי נקודות שונות ומישור (במרחב תלת-ממדי) על ידי כל הקומבינציות הלינאריות של שלוש נקודות שאינן על ישר אחד.
[עריכה] משמעות מודרנית
במשמעותה המודרנית גאומטריה אנליטית עוסקת בחקר של קבוצות אפסים של פונקציות אנליטיות. ישנם קשרים רבים בין גאומטריה אנליטית מודרנית לגאומטריה אלגברית מודרנית, למשל במשפטי ה GAGA של סר.