New Immissions/Updates:
boundless - educate - edutalab - empatico - es-ebooks - es16 - fr16 - fsfiles - hesperian - solidaria - wikipediaforschools
- wikipediaforschoolses - wikipediaforschoolsfr - wikipediaforschoolspt - worldmap -

See also: Liber Liber - Libro Parlato - Liber Musica  - Manuzio -  Liber Liber ISO Files - Alphabetical Order - Multivolume ZIP Complete Archive - PDF Files - OGG Music Files -

PROJECT GUTENBERG HTML: Volume I - Volume II - Volume III - Volume IV - Volume V - Volume VI - Volume VII - Volume VIII - Volume IX

Ascolta ""Volevo solo fare un audiolibro"" su Spreaker.
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
חוק הוק - ויקיפדיה

חוק הוק

מתוך ויקיפדיה, האנציקלופדיה החופשית

חוק הוק מודגם באמצעות קפיץ המשנה אורכו בהשפעת כח חיצוני והיחס בין התזוזה לבין הכח הוא קבוע הקפיץ
חוק הוק מודגם באמצעות קפיץ המשנה אורכו בהשפעת כח חיצוני והיחס בין התזוזה לבין הכח הוא קבוע הקפיץ
התארכות הקפיץ יחסית לעומס. כח כפול גורם לתזוזה כפולה, כך גם התארכות הגוף יחסית למאמץ
התארכות הקפיץ יחסית לעומס. כח כפול גורם לתזוזה כפולה, כך גם התארכות הגוף יחסית למאמץ

חוק הוק מציג את היחס הישר בין מאמץ לבין מעוות יחסי והיחס ביניהם הוא מודול האלסטיות. כח הפועל על קפיץ גורם לתזוזה יחסית לכח ויחסית לקבוע הקפיץ . החוק נקרא על שמו של הפיזיקאי בן המאה ה-17 רוברט הוק. מתקיים:

\ F=k \Delta x

כאשר:

  • \ F הוא הכוח של הקפיץ
  • \ k הוא קבוע הקפיץ
  • \ \Delta x היא תזוזת הקפיץ בהשפעת הכח

תוכן עניינים

[עריכה] חוק הוק

מצב מאמצים ומעוותים מרחבי. מאמץ המשיכה גורם למתיחת הגוף לאורכו ולהתכווצות הגוף בשני הממדים הניצבים
מצב מאמצים ומעוותים מרחבי. מאמץ המשיכה גורם למתיחת הגוף לאורכו ולהתכווצות הגוף בשני הממדים הניצבים

.

התאור הגרפי של חוק הוק הוא הקו המשופע הישר (מראשית הצירים עד נקודה 3) בדיאגרמת מאמץ  - מעוות
התאור הגרפי של חוק הוק הוא הקו המשופע הישר (מראשית הצירים עד נקודה 3) בדיאגרמת מאמץ - מעוות

המאמץ משמש כאן בתפקיד הכח הפועל על הקפיץ. המעוות היחסי משמש בתפקיד התזוזה של הקפיץ ומודול האלסטיות משמש בתפקיד קבוע הקפיץ. גוף הנתון במאמץ משנה את אורכו כתלות במאמץ ובתכונת החומר. אם המאמץ הוא מאמץ מתיחה, נסמן אותו בסימן + (פלוס) והגוף יתארך. אם המאמץ הוא מאמץ לחיצה, נסמן אותו בסימו - (מינוס) והגוף יתכווץ. הקשר בין המאמץ לבין המעוות היחסי במצב מאמצים חד ממדי מגדיר את מודול האלסטיות:

\ E =\frac{\sigma}{\varepsilon}

או בצורת ביטוי הידועה כחוק הוק:

\sigma = E * \varepsilon

ובצורה שתאפשר דיון תלת ממדי:

\varepsilon= \frac{\sigma}{E}


במוט המועמס למתיחה או לחיצה, המעוות היחסי הוא ההתארכות היחסית:

{\varepsilon}= \frac{\Delta L}{L}
  • ההתארכות היחסית יכולה להיות חיובית או שלילית
  • L - אורך החלק
  • ΔL - השינוי באורך

הקשר בין מודול האלסטיות (במתיחה) לבין מודול הגזירה נתון על ידי הביטוי:

\ G=\frac{E}{2(1+\nu)}

[עריכה] דיאגרמת מאמץ - מעוות

הנקודות המסומנות על גבי הדיאגרמה:

1. מאמץ מירבי
2. מאמץ בתחום הפלסטי
3. מאמץ הכניעה, גבול האלסטיות
4. מאמץ ההרס
5. מעוות שיורי

תחום האלסטיות הוא התחום בו התאור של עקומת מאמץ - מעוות בצורת קו ישר והוא בקרוב מהראשית עד אזור מאמץ הכניעה. בחומרים שאזור הכניעה איננו ברור כמו בפלדה ואיננו מוצג בצורת נזילה, מגדירים בדרך כלל את נקודת הכניעה כנקודה בה המעוות היחסי שווה למעוות בשעור 0.2%.

[עריכה] מצב מאמצים ומעוותים מרחבי

מאמצים בקוביה דיפרנציאלית
מאמצים בקוביה דיפרנציאלית

מאמץ מתיחה בכוון x גורם למתיחת המוט בכוון באותו כוון X, ולהתכווצות המוט בכיוונים הניצבים Y,Z בשעור המתקבל מהמכפלה של המאמץ בכוון X במקדם פואסון. כך גם בכוונים Y,Z. חוק הוק המוכלל למצב מאמצים תלת-ממדי, מתקבל משלוש מתיחות חד-ציריות לכל אחד מהכיוונים ושימוש בעקרון הסופרפוזיציה:

\epsilon_{x} = \frac{\sigma_{x}}{E} - \nu \frac{\sigma_{y}}{E} - \nu \frac{\sigma_{z}}{E} = \frac{1}{E} [\sigma_{x} - \nu (\sigma_{y} + \sigma_{z})]
\epsilon_{y} = \frac{\sigma_{y}}{E} - \nu \frac{\sigma_{x}}{E} - \nu \frac{\sigma_{z}}{E} = \frac{1}{E} [\sigma_{y} - \nu (\sigma_{x} + \sigma_{z})]
\epsilon_{z} = \frac{\sigma_{z}}{E} - \nu \frac{\sigma_{x}}{E} - \nu \frac{\sigma_{y}}{E} = \frac{1}{E} [\sigma_{z} - \nu (\sigma_{x} + \sigma_{y})]

בחוק הוק עבור חומרים כלליים יותר מקפיץ, k הוא טנזור והוא מיוצג על ידי מטריצה של קשיחות החומר בגודל 9x9. אם החומר הוא לינארי, אלסטי ואיזוטרופי, נדרשים שני קבועים על מנת לקבוע את התנהגותו תחת מאמצים: מודול האלסטיות \ E ומודול הגזירה \ G. כאשר עוסקים במקרה של קפיץ שלא מופעלים עליו כוחות גזירה מקבלים את המקרה הפרטי בו מודול האלסטיות הוא קבוע הקפיץ \ k.

[עריכה] אנרגיה

במונחים של אנרגיה חוק הוק הוא קירוב הרמוני של האנרגיה הפוטנציאלית של הקפיץ עבור הפרעות קטנות ("קירוב תנודות קטנות"). קירוב בו מפתחים את האנרגיה הפוטנציאלית של הקפיץ סביב מצב שיווי המשקל שלו. אם בנקודה \ x_0 הקפיץ נמצא בשיווי משקל (אנרגיה פוטנציאלית מינימלית), אזי בקירוב, האנרגיה הפוטנציאלית שלו כתלות במרחק מנקודת שיווי המשקל יהיה:

\ U = \frac{1}{2} k ( x - x_0 )^2

[עריכה] קישורים חיצוניים

[עריכה] לקריאה נוספת

  • Timoshenko S.P, Strength of Materials, 3rd edition, Krieger Publishing Company, 1976. ISBN 0882754203
  • Sybil P. Parker Editor in Chieh. McGraw-Hill Encyclopedia of Engineering, McGraw Hill Book Company 1983, ISBN 0-07-8-045486
  • S.P. Timoshenkoo & J.N. Goodier Theory of Elasticity, 3rd edition, International Student Edition, McGraw-Hill 1970..
  • Shames I.H., Cozzarelli F.A., Elastic and inelastic stress analysis, Prentice-Hall, 1991, ISBN 1560326867
מאמץ (הנדסה)
מאמצים: מאמץ גזירה - מאמץ כפיפה - מאמץ לחיצה - מאמץ מתיחה - מאמץ פיתול - מאמץ קריסה - עייפות החומר
נושאי עזר: מומנט כפיפה - מומנט כוח - מודול האלסטיות - אלסטיות - חוק הוק - קבועי לאמה - מקדם פואסון - מודול הגזירה
שטחים: שטח - מומנט התמד - מומנט ההתמד של השטח - מומנט התמד פולרי של השטח - משפט שטיינר - טנזור התמד
נושאים משלימים: חוזק חומרים - טנזור מאמצים - מאמצים ראשיים - מעגל מור - היפותזות חוזק - שיטות אנרגיה - חוקי קסטיליאנו

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu