עקרון פרמה
מתוך ויקיפדיה, האנציקלופדיה החופשית
עקרון פרמה או עיקרון הזמן המינימלי, קובע כי בתנועתה בין שתי נקודות נתונות, עוברת קרן אור במסלול בו זמן תנועתה הוא הקצר ביותר, או בניסוח שקול: במסלול בו הדרך האופטית היא הקצרה ביותר. הדרך האופטית שווה לדרך בפועל כפול גורם השבירה של התווך דרכו עוברת הקרן. העקרון פורסם לראשונה על ידי פייר דה פרמה, כיוון שלא היה מרוצה מהתאוריה של דקארט עבור חוק השבירה של קרניים (חוק סנל), אולם הרעיון שהאור נע במסלול הקצר ביותר בין שתי נקודות מצוי כבר אצל אוקלידס. עקרון פרמה לא זכה להכרה בקרב הקהילה המדעית בתקופה שנוסח, אולם כיום הוא מייצג גישה בסיסית לניסוח של חוקי הפיזיקה.
מעיקרון זה ניתן, בפרט, לגזור את חוק ההחזרה ממראה (זווית פגיעה שווה לזווית החזרה), ואת חוק השבירה של קרני אור (חוק סנל) במעבר בין שני חומרים בעלי מקדמי שבירה שונים. במקרים מסובכים יותר, למשל כאשר מקדם השבירה משתנה לאט במרחב, יש להשתמש בחשבון וריאציות כדי לחשב את מסלולי הקרניים.
אף שהקו הקצר ביותר בין שתי נקודות הוא הקו הישר המחבר ביניהן, לא בהכרח זהו הקו שבו תעבור קרן אור את המרחק בין שתי הנקודות בזמן הקצר ביותר. תוצאה זו נובעת מכך שמהירות האור תלויה בתווך שבו הוא עובר. ניתן להמחיש זאת באמצעות דוגמה של מציל בחוף הים שצריך להגיע מסוכת המציל לאדם טובע בים בדרך המהירה ביותר. המציל מסוגל לרוץ על החוף הרבה יותר מהר משהוא מסוגל לשחות במים, ולכן המסלול המהיר ביותר לא יהיה קו ישר מהסוכה אל האיש הטובע אלא קו הנשבר על קו המים, כך שהדרך על החוף תהיה ארוכה יותר, אך בזכות זאת הדרך במים תהיה קצרה יותר, ובסך הכול דרך זו תאפשר להגיע אל הטובע מהר יותר.
ניתן להתייחס לעקרון פרמה כמקרה פרטי של עיקרון המילטון.
תופעה מעניינת הנובעת מעיקרון פרמה היא תנועת האור בסיב אופטי מסוג graded index. בסיב זה האור לא נע כלל בקווים ישרים אלא בתבנית הדומה לסינוס.
בניגוד לעקרון פרמה, לפי תורת הקוונטים המעבר של חלקיק בין שתי נקודות נתונות נעשה בו זמנית דרך כל המסלולים האפשריים, וההתאבכות של מסלולים אלו קובעת את הסתברות המעבר של החלקיק (ראו אינטגרלי מסלול של פיינמן). למרות זאת בגבול הסמיקלאסי, כלומר בגבול של אורך גל קצר, המסלולים בעלי המשקל הגבוה הם המסלולים הקרובים ביותר לאלו הנקבעים מעקרון הפעולה המינימלית של המכניקה הקלאסית, שעקרון פרמה הוא מקרה פרטי שלו.