פיזיקה
מתוך ויקיפדיה, האנציקלופדיה החופשית
למושגים, תחומים, פיזיקאים ומאמרים, ראו פורטל הפיזיקה. |
פיזיקה (מקור המילה בשפה היוונית-פיוזיס) היא חקר הטבע, במובן הרחב ביותר. פיזיקאים חוקרים את התנהגות החומר והאנרגיה, ואת השפעתם על החלל הסובב אותם. תאוריות פיזיקליות מתוארות לרוב על ידי משוואות מתמטיות. לתאוריות מבוססות היטב ניתן להתייחס כאל "חוק פיזיקלי", אך כמו כל תאוריה מדעית, ייתכן שהן תשתננה כתוצאה מתצפיות חדשות, ניסויים או תאוריות מוכללות יותר.
הפיזיקה קרובה מאוד למדעי טבע אחרים, במיוחד כימיה, מדע הפרודות והתרכובות הכימיות שהן יוצרות ביחד. הכימיה נסמכת על תחומים רבים בפיזיקה, ובפרט מכניקת הקוונטים, תרמודינמיקה ואלקטרודינמיקה. עם זאת, התופעות הכימיות מגוונות דיין כדי שכימיה תיחשב בדרך כלל כתחום נפרד.
נהוג לחלק את הפיזיקה לשני תחומים עיקריים - הפיזיקה הקלאסית, הכוללת תחומים כמו מכניקה, תרמודינמיקה, תורת החשמל ועוד, והפיזיקה המודרנית שהתחומים העיקריים בה הם מכניקת הקוונטים ותורת היחסות.
תוכן עניינים |
[עריכה] תולדות הפיזיקה
- ערך מורחב – היסטוריה של הפיזיקה
מתחילת ההיסטוריה האנושית, ניסה האדם להבין את התנהגות החומר: מדוע עצמים נופלים לקרקע באין תמיכה, מדוע לחומרים שונים יש תכונות שונות, וכן הלאה. גם אופי היקום היה מיסתורי, כמו צורת כדור הארץ והתנהגות גופים שמימיים, כמו השמש והירח. מספר תאוריות הוצעו, רובן היו שגויות. תאוריות אלו נוסחו ברובן במונחים פילוסופיים או מטאפיזיים, ומעולם לא אומתו בניסויים שיטתיים. יש יוצאים מן הכלל: לדוגמה, ההוגה היווני ארכימדס מצא תיאורים כמותיים נכונים רבים במכניקה והידרוסטטיקה.
לעומת זאת, דווקא בתחום האסטרונומיה גילו הקדמונים דיוק רב בביצוע תצפיות אחרי מסלולים של כוכבים ותיעוד תצפיות אלה. האסטרונומיה הייתה מפותחת ברוב התרבויות הגדולות, לרבות מצרים העתיקה, בבל העתיקה, סין ויוון העתיקה. האסטרונום היווני תלמי אף הציע מודל מתמטי-גאומטרי שהסביר בצורה לא רעה בכלל את תנועת הכוכבים כפי שניצפית בשמיים. למרות שהיה שגוי, מודל זה היה כה מוצלח מבחינה אמפירית והוא שלט בכיפה עד להופעתו של המודל הקופרניקני. חשיבותו של המודל היווני לתנועת כוכבי הלכת היא השימוש במתמטיקה לצורך הפיזיקה, לא רק ככלי תיאורי גרידא אלא כביטוי כמותי לחוקי הטבע, שמהם אף אפשר לחזות תופעות שניתנות לצפיה על ידי ביצוע חישובים מתאימים על פרטי המודל.
בשלהי המאה ה־16 גלילאו היה הראשון שהשתמש בניסוי כדי לאמת תאוריות פיזיקליות, שהוא העיקרון המנחה של השיטה המדעית. גלילאו ניסח ובדק בהצלחה מספר תוצאות בדינמיקה, ובמיוחד חוק התנע. ב־1687 ניוטון פרסם את ספרו "היסודות המתמטיים של פילוסופית הטבע" (Principia Mathematica), המתאר שתי תאוריות פיזיקליות שלמות ומצליחות: חוקי התנועה של ניוטון, מהם נובעת המכניקה הקלאסית; וחוק הכבידה של ניוטון, המתאר את הכוח היסודי של הכבידה. שתי התאוריות התאימו היטב לניסויים. המכניקה הקלאסית הורחבה מאוד על ידי לגרנג', המילטון ואחרים, שיצרו ניסוחים, עקרונות ותוצאות חדשות. חוק הכבידה הביא לפיתוח שדה האסטרופיזיקה, המתאר תופעות אסטרונומיות בעזרת תאוריות פיזיקליות.
החל מן המאה ה־18, פותחה התרמודינמיקה על ידי בויל, יאנג ואחרים. בשנת 1733, ברנולי השתמש בטיעונים סטטיסטיים עם מכניקה קלאסית כדי להשיג תוצאות תרמודינמיות, והניח את היסוד למכניקה סטטיסטית. בשנת 1798, תומפסון הדגים המרת עבודה מכנית לחום, וב־1847 ג'אול ניסח את חוק שימור האנרגיה, בצורת חום ובצורת אנרגיה מכנית.
התנהגות החשמל והמגנטיות נחקרה על ידי פאראדיי, אוהם ואחרים. ב־1855 מקסוול איחד את שתי התופעות לתורה יחידה של אלקטרומגנטיות, המתוארת על ידי משוואות מקסוול. ניבוי של תורה זו היה שהאור הוא גל אלקטרומגנטי.
בשנת 1895 רנטגן גילה את קרני ה־X, שהתגלו כקרינה אלקטרומגנטית בתדר גבוה. רדיואקטיביות התגלתה על ידי אנרי בקרל, ונחקרה עוד על ידי פייר ומארי קירי, ואחרים. זה הניח את הבסיס לשדה הפיזיקה הגרעינית.
בשנת 1897 גילה ג' ג' תומסון את האלקטרון, החלקיק היסודי הנושא זרם חשמלי במעגלים. ב־1904 הוא מציע את הדגם הראשון של האטום. קיומו של האטום הוצע ב־1808 על ידי דלטון.
בשנת 1905 ניסח איינשטיין את תורת היחסות הפרטית, המאחדת את הזמן והמרחב לישות אחת, מרחב-זמן. הוא הגיע אל תורה זו מתוך התבוננות במשוואות מקסוול, ותוצאות ניסוי מיכלסון-מורלי. היחסות דורשת טרנספורמציה שונה בין מסגרות ייחוס מאשר המכניקה הקלאסית; דבר זה הצריך את פיתוח המכניקה היחסותית כתחליף למכניקה הקלאסית. בתחום המהירויות הנמוכות, שתי התאוריות תואמות. ב־1915 הרחיב איינשטיין את תורת היחסות הפרטית כדי להסביר את הכבידה עם תורת היחסות הכללית, המחליפה את חוק הכבידה של ניוטון. בתחום של מאסות ואנרגיות נמוכות, שתי התאוריות תואמות.
בשנת 1911, רתרפורד הסיק מניסויי פיזור את קיומו של גרעין אטומי, עם רכיבים בעלי מטען חשמלי חיובי, שכונו פרוטונים. נייטרונים, הרכיבים הנייטרליים בגרעין, התגלו ב־1932 על ידי צ'אדוויק.
החל בשנת 1900, פלנק, איינשטיין, בוהר ואחרים פיתחו תורות קוונטיות בכדי להסביר תוצאות ניסויים לא רגילות על ידי הצגת רמות אנרגיה בדידות. ב־1925 הייזנברג, וב־1926 שרדינגר ודיראק, ניסחו את מכניקת הקוונטים, שהסבירה את התאוריות הקוונטיות שקדמו לה. במכניקה קוונטית, תוצאות מדידות פיזיקליות הן הסתברותיות לחלוטין. התורה מסבירה את חישוב ההסתברויות האלו. היא מסבירה בהצלחה את התנהגות החומר בקנה מידה קטן מאוד.
מכניקה קוואנטית מספקת גם את הכלים התיאורטיים עבור פיזיקת מצב מוצק, החוקרת את ההתנהגות הפיזיקלית של חומר מעובה הכולל תופעות כגון מבנים גבישיים, מוליכות למחצה ומוליכות על. בין חלוצי פיזיקת המצב המוצק היה בלוך, שיצר תיאור של התנהגות האלקטרונים במבנים גבישיים על פי המכניקה הקוואנטית ב־1928.
במהלך מלחמת העולם השנייה, נערכו מחקרים על ידי הצדדים בתחום הפיזיקה הגרעינית, על מנת ליצור פצצה גרעינית. המאמץ הגרמני, שהונהג בידי הייזנברג, לא הצליח, אך פרויקט מנהטן של בעלות הברית הגיע אל מטרתו. באמריקה, צוות בראשות פרמי השיג את תגובת השרשרת הגרעינית שנעשתה בידי אדם הראשונה מעולם בשנת 1942, וב־1945 נוסה הנשק הגרעיני לראשונה באתר טריניטי, סמוך לאלאמוגורדו, ניו מקסיקו.
תורת השדות הקוונטית נוסחה על מנת להרחיב את המכניקה הקוואנטית כך שתהיה עקבית עם היחסות הפרטית. היא השיגה את מטרתה בשלהי שנות הארבעים, עם עבודתם של ריצ'רד פיינמן, ג'וליאן שווינגר, טומונגה ודייסון. הם ניסחו את תורת האלקטרודינמיקה הקוואנטית, המתארת את היחסים האלקטרודינמיים.
תורת השדות הקוואנטית מספקת את המסגרת לפיזיקת החלקיקים המודרנית, החוקרת את הכוחות היסודיים ואת החלקיקים היסודיים. בשנת 1954 פיתחו ינג ומילס אוסף של תאוריות שסיפקו את המסגרת עבור המודל הסטנדרטי. המודל הסטנדרטי, שהושלם בשנות השבעים, מתאר בהצלחה את כמעט כל החלקיקים היסודיים שנצפו עד כה.
[עריכה] פיזיקה תיאורטית
הפיזיקה התיאורטית משתמשת במודלים מתמטיים ובהפשטת הפיזיקה בנסיון להבין את הטבע.
הפיזיקה המתמטית הינה כלי מרכזי בתחום זה, על אף שישנן טכניקות נוספות בהן נעזרים. המטרה היא להבין, להסביר ולחזות תופעות פיזיקליות.
התקדמות המדע תלויה בדרך כלל בפעולה ההדדית בין הפיזיקה התיאורטית והניסויית. בחלק מהמקרים, דובקת הפיזיקה התיאורטית בבסיס של המתמטיקה הקפדנית, בעוד היא נותנת משקל מועט לניסויים ותצפיות. למשל, בפיתוחו את תורת היחסות הפרטית, התעסק איינשטיין עם טרנספורמציות לורנץ שהשאירו את משוואות מקסוול קבועות, אולם לא התעניין באופן גלוי בניסוי מייקלסון-מורלי שעסק בתנועת כדור הארץ דרך האתר. מנגד, איינשטיין נשען על תהליך ניסויי נטול משוואות תיאורטיות, בהסבירו את האפקט הפוטואלקטרי, דבר שזיכה אותו בפרס נובל.
[עריכה] כיוונים עתידיים
נכון לשנת 2006, המחקר מתקדם במספר גדול של שדות בפיזיקה.
בפיזיקת המצב המוצק, הבעיה התיאורטית הבלתי פתורה הגדולה ביותר היא ההסבר לעל מוליכות בטמפרטורה גבוהה. מאמצים רבים, ניסויים ברובם, מושקעים ביצירת ספינטרוניקה מעשית ומחשבים קוואנטים.
בפיזיקת החלקיקים, העדויות הניסיוניות הראשונות לפיזיקה מעבר למודל הסטנדרטי החלו להופיע. החשובה מביניהן היא העדות שלנייטרינו יש מסה לא אפסית. נראה שתוצאות ניסויות אלו פתרו את בעיית הנייטרינו הסולארי הוותיקה בפיזיקה של השמש. הפיזיקה של נניטרינו מסיביים היא כרגע תחום בו מבוצעים מחקרים תיאורטיים וניסויים רבים. בשנים הקרובות, מאיצי חלקיקים יחלו בחקר אנרגיות בקנה מידה של טרה-אלקטרון-וולט (טריליון אלקטרון-וולט), בו מקווים החוקרים למצוא עדויות לבוזון היגס ולחלקיקים סימטריים.
נסיונות תיאורטיים לאחד את מכניקת הקוונטים ואת תורת היחסות הכללית לתאוריה אחת של כבידה קוונטית, תוכנית הנמשכת כבר מעל חצי מאה, טרם נשאו פרי. המועמדים המובילים כיום הם תורת M וכבידה קוונטית לולאתית.
תופעות אסטרונומיות טרם הוסברו, כולל קיומן של קרניים קוסמיות באנרגיה אולטרה גבוהה ושיעורי סיבוב לא צפויים של גלקסיות. הוצעו תאוריות לפתרון בעיות אלו, כולל יחסות פרטית כפולה, דינמיקה ניוטונית מתוקנת, וקיומו של חומר אפל. בנוסף, התחזיות הקוסמולוגיות של העשורים האחרונים נסתרו על ידי עדויות חדשות לפיהן התפשטות היקום מאיצה
[עריכה] לקריאה נוספת
- אלברט איינשטיין וליאופולד אינפלד, התפתחות הפיזיקה החדשה - ממושגים ראשונים ועד יחסיות וקואנטים, ספרית פועלים, 1976.
- פול ג' היואיט, פיזיקה לכל, הוצאת מכון ברנקו וייס, 1997.
- ספרי פיזיקה ומדריך לימודים באתר ויקיספרים.
- פיינמן, QED התאוריה המוזרה של אור וחומר, כריכה רכה, הוצאת הקיבוץ המאוחד 1998.
- פיינמן, The Character of Physical Law, Random House (Modern Library), 1994, כריכה קשה, 192 עמודים, ISBN 0679601279
- פיינמן, Leighton, Sands, The Feynman Lectures on Physics, Addison-Wesley 1970, 3 כרכים, כריכה רכה, ISBN 0201021153; כריכה קשה, מהדורת זיכרון, 1989, ISBN 0201500647
- בריאן גרין, The Elegant Universe: Superstrings, Hidden Dimensions, and the Quest for the Ultimate Theory, 464 עמודים, כריכה רכה, Vintage Books, 2000, ISBN 0375708111; כריכה קשה, W.W. Norton & Company, 2003, ISBN 0393058581
- פרסומים חשובים בפיזיקה
[עריכה] קישורים חיצוניים
- פיזיקה פלוס - המגזין המקוון של החברה הישראלית לפיזיקה
- יואב בן-דב, מבוא לפיזיקה: היסטוריה, תאוריות ומושגים
- התפתחות הפיזיקה במאה העשרים - באתר ה-American Physical Society (באנגלית)
- Eric Weisstein, Weisstein and Wolfram Research, Inc., and et al, World of Physics - אנציקלופדיה פיזיקלית מקוונת (באנגלית)
- Carl R. Nave, HyperPhysics - מפות מושגים בפיזיקה עם קישורים צולבים (באנגלית)
- מרכז מידע על פיזיקה (באנגלית)
- הסברים על פיזיקה בשפה פשוטה (באנגלית)