Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Web Analytics
Cookie Policy Terms and Conditions Számtani sorozat - Wikipédia

Számtani sorozat

A Wikipédiából, a szabad lexikonból.

A számtani sorozat (más néven aritmetikai sorozat) egy elemi matematikai fogalom, mely a matematika sok részterületén előfordul.

Tartalomjegyzék

[szerkesztés] Definíció

Számtani sorozatoknak nevezzük azokat a sorozatokat, amelyekben (a másodiktól kezdve) bármelyik tag és az azt megelőző tag különbsége állandó, vagyis

anan − 1 = d, ha n > 1

a_1, a_2, a_3 \dots a_n, a_{n+1} \dots akkor és csak akkor számtani sorozat, ha an + 1an = d állandó, \forall n \in N^+-ra.

A fentiekből következik a számtani sorozat rekurzív képlete:

a_{n+1}=a_n+d, \forall n \in N^+

[szerkesztés] Elnevezések

A sorozat különbségét differenciának nevezzük, szokásos jelölése: d.

[szerkesztés] Tulajdonságok

  • A számtani sorozat monoton növekvő, és alulról korlátos, ha d > 0
  • A számtani sorozat monoton csökkenő, és felülről korlátos, ha d < 0
  • A számtani sorozat nemnövekvő, nemcsökkenő, azaz állandó, ha d = 0

[szerkesztés] Példák

első tag különbség a sorozat pár tagja
0 1 0, 1, 2, 3, 4, 5, 6, ...
0 2 0, 2, 4, 6, 8, 10, 12, ...
1 2 1, 3, 5, 7, 9, 11, 13, ...
101 -20 101, 81, 61, 41, 21, 1, -21, ...
- 2,1 -1,01 -3,11; -4,12; -5,13; -6,14; -7,15; -8,16;

Legyen az a számtani sorozatban: a1 = 3, a differencia: d = 3, akkor a sorozat: 3; 6; 9; 12; …

[szerkesztés] A számtani sorozat n-edik eleme

A sorozat n-edik elemére nem csak rekurzív, hanem explicit képlet is adható. Mivel a sorozat minden lépésben d-vel változik, ezért

a_n = a_1 + (n-1)\cdot d.

Ha n > i, akkor

a_n=\frac {a_{n-i}+a_{n+i}}{2}.

Ez speciálisan i = 1 esetén azt jelenti, hogy a számtani sorozat egy eleme a két szomszédos tag számtani közepe.

[szerkesztés] Számtani sorozat első n tagjának összege

A sorozat első n tagjának összegét a következő ötlettel határozhatjuk meg. Vegyük az első n tagot, ezek: a_1, a_2, \ldots, a_n. Majd írjuk fel ez alá a tagokat fordított sorrendben, vagyis a_n, a_{n-1}, \ldots, a_1. Számítsuk ki ennek a 2n darab számnak az összegét. Ez egyrészt a keresett összeg kétszerese, hiszen az első n tag mindegyike pontosan kétszer szerepel. Másrészt pedig az egymás alatt lévő számok összege éppen a1 + an. Összesen n egymás alatti pár van, vagyis az összeg éppen (a_1+a_n) \cdot n. De ez az általunk keresett összeg kétszerese, vagyis a helyes eredmény:

\frac{(a_1+a_n) \cdot n}2

Ha még azt is felhasználjuk, hogy an = a1 + (n − 1)d, akkor

\frac{(2a_1+(n-1)d) \cdot n}2

Ezt a képletet alkalmazva a1 = 1 és d = 1 esetben, megkapjuk az első n pozitív egész szám összegét, azaz \frac{(n+1)\cdot n}2-t.

[szerkesztés] Érdekesség

  • Már az ókori egyiptomiak is ismerték a számtani és mértani sorozatot. Erről tanúskodik az ún. Rhind-papirusz, amely körülbelül Kr.e. 1750-ből való.
  • Egy híres történet, amely a szájhagyomány útján átalakult, arról szól, hogy Gauss általános iskolai tanára, J. G. Büttner diákjait azzal akarta lefoglalni, hogy 1-től 100-ig adják össze az egész számokat. A fiatal Gauss mindenki megdöbbenésére másodpercek alatt előrukkolt a helyes megoldással, megvillantva matematikai éleselméjűségét. Gauss észrevette, hogy a sor ellenkező végein lévő számok párokba állításával azonos összegeket kap: 1 + 100 = 101, 2 + 99 = 101, 3 + 98 = 101 stb., ami összesen 50\cdot 101 = 5050-et eredményez (lásd a számtani sorozatokat és az összegzést). Több információ a témában itt található:[1]. 1

1.) A wikipedia.hu Carl Friedrich Gauss szócikkéből

[szerkesztés] Források

Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu