New Immissions/Updates:
boundless - educate - edutalab - empatico - es-ebooks - es16 - fr16 - fsfiles - hesperian - solidaria - wikipediaforschools
- wikipediaforschoolses - wikipediaforschoolsfr - wikipediaforschoolspt - worldmap -

See also: Liber Liber - Libro Parlato - Liber Musica  - Manuzio -  Liber Liber ISO Files - Alphabetical Order - Multivolume ZIP Complete Archive - PDF Files - OGG Music Files -

PROJECT GUTENBERG HTML: Volume I - Volume II - Volume III - Volume IV - Volume V - Volume VI - Volume VII - Volume VIII - Volume IX

Ascolta ""Volevo solo fare un audiolibro"" su Spreaker.
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Principio di non contraddizione - Wikipedia

Principio di non contraddizione

Da Wikipedia, l'enciclopedia libera.

Questa voce è da wikificare

Questa voce non è ancora formattata secondo gli standard: contribuisci a migliorarla seguendo le convenzioni di Wikipedia. Voce segnalata nel agosto 2006

In logica classica, il principio di non-contraddizione afferma la falsità di ogni proposizione implicante che una certa proposizione A e la sua negazione, cioè la proposizione non-A, sono entrambe vere allo stesso tempo e nello stesso modo. Secondo le parole di Aristotele, "Non è lecito affermare che qualcosa sia e non sia nello stesso modo ed allo stesso tempo."

Più esplicitamente, la proposizione (A e non-A) è assunta falsa. In simboli, ciò è espresso come segue:

\neg (A \wedge \neg A).\,

Indice

[modifica] Il principio di non contraddizione è fondamentale

Per approfondire, vedi la voce ex falso quodlibet.

Fin dal Medioevo[1]è noto un interessante risultato della Logica: in un sistema di logica dicotomica in cui sia vera una affermazione ed anche la sua negazione, è vera qualsiasi affermazione. Tale assunzione è solitamente citata nella letteratura latina come ex falso quodlibet, e come principio di esplosione nella logica moderna.

[modifica] Conclusioni

Un sistema logico dove siano valide le comuni regole di inferenza e dove sia anche presente una contraddizione, ossia sia VERA (completamente vera) una affermazione e anche la sua negazione, è privo di logica, di struttura e di informazione, poiché tutte le affermazioni sono vere (comprese le loro negazioni). E quindi non può essere interessante poiché non comunica informazione. Questo risultato è anche noto come principio di esplosione. La banalizzazione di un sistema in cui sia presente contraddizione puo` essere evitata solo a patto di indebolire il sistema stesso, scartando regole di inferenza o assiomi. Questo avviene nelle cosiddette logiche paraconsistenti.

                  IL PENSIERO UNICO RIVELATORE
    Di tutti i principi compreso quello di NON CONTRADDIZIONE

Con la prima fondamentale contraddizione:

        il PENSIERO realtà  oppure  il PENSIERO non realtà

Da cui procede la seconda contraddizione:

      Siamo solo NATURA  oppure  non siamo solo NATURA

Bensì, avendo sempre presente, che questa seconda contraddizione esiste solo in quanto è rivelata dalla prima. Orbene, mentre ogni contraddizione che l' uomo OSSERVA dal MONDO NATURALE, non gli solleva dubbi, esempio:

          Il sole sorge  oppure  il sole non sorge

Al contrario quelle formulate per ogni nostra AZIONE - possono sucitare dubbi, esempio:

       Questa frase è vera  oppure  questa frase è falsa

Allora, tutto l' atteggiamento nostro con le conseguenti AZIONI - possono essere " vere o false" - per il potere che ci dà la libertà RESPONSABILE il PENSIERO. Conclusione, il PENSTERO rivela a noi DUE MONDI, quello responsabile di ogni individuo e quello IRRESPONSABILE INNOCENTE della NATURA. Dunque, viviamo si una LOGICA BIVALENTE bensì proprio in quanto rese creature consapevoli dal PENSIERO..

[modifica] Logiche a più valori

Sebbene in una logica polivanlente (avendo opportunamente definito gli operatori AND e NEG) si possa avere che la forma classica del principio di non contraddizione cessi di valere, ossia in termini grado di verità:

v(A \wedge \neg A) > 0.\,

per qualche proposizione (che e' impossibile in logica classica a causa del principio di bivalenza), e` in ogni modo utile rilevare che un'altra forma del principio di non contraddizione continua a funzionare nelle logiche a più valori (come la citata logica fuzzy) nella forma seguente:

una affermazione e la sua negazione non possono essere ambedue simultaneamente completamente vere,

che si traduce nella diseguaglianza in termini di grado di verità:

v(A \wedge \neg A)<1.\,

Nella logica fuzzy, si ha ha ad esempio

\mu(\neg A) \wedge \mu (A) = min(\mu(A), 1 - \mu(A))

perché l'AND logico è rappresentato dal minimo dei due valori, valendo inoltre

\mu(\neg A) = 1 - \mu( A)

appare ovvio che il risultato non potrà mai essere maggiore di 1/2. Ben si comprende che nel caso esistano solo due valori di verità, come nella logica aristotelica, si ottiene l'enunciato sopra esposto. In questo senso si puo' sostenere che il principio di non-contraddizione continua a valere in logica polivalente.

[modifica] Logiche polivalenti di Gödel e prodotto

Nella logica polivalente di Gödel e nella logica polivalente prodotto, la negazione di una proposizione si definisce nella maniera seguente:

v(\neg A) = 0.\, se v(A) > 0.\, ,
v(\neg A) = 1.\, se v(A) = 0.\,.

Si noti che in generale:

V(A)+V( \neg A) \le 1

Si trova dunque un interessante risultato:

v(A \wedge \neg A) = 0.\,

e quindi in tali logiche polivalenti è addirittura valida la forma standard del principio di non-contraddizione. Questo sta a confermare il fatto che in generale la polivalenza non implica la negazione in alcuna forma del principio di non contraddizione.

[modifica] Logica di Lukasiewicz ad infiniti valori di verità

Sotto opportune condizioni, quali quelle che vigono nella logica di Lukasiewicz ad infiniti valori di verità (logica fuzzy), si ha che il principio di non contraddizione diviene per qualsivoglia asserzione A:

V(A)+V( \neg A)=1

Questa di fatto e` la definizione della negazione nella logica fuzzy di Lukasiewicz e di Zadeh. E` interessante rilevare che l'equazione logica:

V(A)=V( \neg A)=1-V(A),

che è priva di soluzioni nell'insieme degli interi (in particolare, nel sottoinsieme degli interi {0,1}), ammette invece la soluzione frazionaria: v = 1 / 2 nel campo dei numeri reali (in particolare, nel sottoinsieme individuato dall'intervallo chiuso [0,1]) e cio` segue precisamente dal principio di non-contraddizione. Il punto fondamentale rimane comunque che in un sistema fuzzy quale quello di Lukasiewicz o di Zadeh, e` impossibile dimostrare (VERE) sia un affermazione che la propria negazione ( che implicherebbe :V(A)+V( \neg A)=2). Dunque possiamo concludere che le logiche di Lukasiewicz e di Zadeh, non sono paraconsistenti ed in tal senso non violano il principio di non contraddizione.

[modifica] Voci correlate

[modifica] Bibliografia e riferimenti

  1. Generalmente si attribuisce a Duns Scoto l'ex falso quodlibet

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu