Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Web Analytics
Cookie Policy Terms and Conditions Druga zasada termodynamiki - Wikipedia, wolna encyklopedia

Druga zasada termodynamiki

Z Wikipedii

Druga zasada termodynamiki stwierdza, że w układzie zamkniętym istnieje addytywna funkcja stanu, zwana entropią S, która jest rosnącą funkcją energii wewnętrznej oraz której zmiana ΔS w procesie adiabatycznym spełnia nierówność \Delta S\ge 0, przy czym równość zachodzi wtedy i tylko wtedy, gdy proces jest odwracalny.

W uproszczeniu można to wyrazić też tak:

"W układzie zamkniętym w dowolnym procesie entropia nigdy nie maleje"

Uwaga!
W wielu opracowaniach pojawia się błąd, polegający na stwierdzeniu, że druga zasada termodynamiki zapewnia formie ciepła istnienie czynnika całkującego. Jest to tylko część treści tej zasady. Najlepiej się o tym przekonać wybierając prosty układ opisany dwoma parametrami. Z matematyki wiadomo, że w takim układzie (dwuwymiarowa przestrzeń stanów), każda forma liniowa ma czynnik całkujący! A zatem tak rozumiana zasada termodynamiki nic by nie wnosiła do takich układów.[1]

Spis treści

[edytuj] Definicja w terminach termodynamiki klasycznej

Matematyczny zapis tego faktu to następujące sformułowanie: zmiana entropii ΔS w dowolnym procesie odwracalnym jest równa całce z przekazu ciepła DQ podzielonego przez temperaturę T. W procesie nieodwracalnym natomiast zmiana entropii jest większa od tej całki. Forma całkowa II zasady termodynamiki wygląda następująco:

\Delta S \ge \int \frac{DQ}{T}

Różnica ta jest miarą nieodwracalności procesu i jest związana z rozpraszaniem energii. Oznaczenie DQ użyte do zapisu przyrostu ciepła ma na celu odróżnienie tego przyrostu od różniczki (ozn. dX), ponieważ przyrost ciepła nie jest różniczką żadnej funkcji. Gdyby był różniczką, ciepło byłoby funkcją stanu.

[edytuj] Alternatywne sformułowania

Druga zasada termodynamiki może być sformułowana na wiele równoważnych sposobów. Wiele z nich nie wymaga odwoływania się do abstrakcyjnych pojęć, takich jak entropia, umożliwiając łatwiejsze zrozumienie fizycznej istoty tego prawa.

Najszerzej znane alternatywne sformułowania pochodzą od Clausiusa:

"Ciepło nie może samorzutnie przepływać od ciała o temperaturze niższej do ciała o temperaturze wyższej"

oraz od Lorda Kelvina:

"Nie jest możliwy proces, którego jedynym skutkiem byłoby pobranie pewnej ilości ciepła ze zbiornika i zamiana go w równoważną ilość pracy"

Można udowodnić równoważność tych stwierdzeń z powyższym sformułowaniem[2].

[edytuj] Definicja, w terminach termodynamiki statystycznej

{\left( \frac {\partial S} {\partial U} \right) }_{N,T} > 0
S = \sum_{i}^{} {S_i}

[edytuj] Wnioski z II zasady Termodynamiki

[edytuj] Silnik cieplny nie może działać bez różnic temperatury

Inne, równoważne, sformułowanie drugiej zasady termodynamiki wiąże się z silnikiem cieplnym, czyli urządzeniem zamieniającym ciepło na pracę. Zgodnie z tym sformułowaniem, spontaniczny przekaz ciepła może się dokonywać tylko od ciała cieplejszego do zimniejszego. Idealny silnik, pracujący w cyklu przemian odwracalnych, ma sprawność η ograniczoną różnicą temperatur ciał, pomiędzy którymi przekazywane jest ciepło:

\eta = \frac{T_1-T_2}{T_1}
\eta = \frac{Q_1-Q_2}{Q_1}
\eta = \frac{W}{Q}

gdzie ciepło jest przekazywane od ciała o temperaturze T1 do ciała o temperaturze T2. Silnik spełniający tę regułę jest nazywany silnikiem Carnota.

Z II zasady termodynamiki zastosowanej do silników cieplnych wynika, że nie można ciepła zamieniać na pracę bez ograniczeń, nawet wtedy gdy jest to zgodne z I zasadą termodynamiki. Nie można bez wkładu pracy przesyłać energii termicznej między ciałami mającymi tę samą temperaturę.

Prowadzi to do dalszego wniosku - nie da się w pełni kontrolować procesów statystycznych, np. nie można czerpać energii z przypadkowych ruchów cząstek, takich jak ruchy Browna. Z II zasady wynika, że przyrządy do czerpania tego rodzaju energii po pewnym czasie też zaczną się zachowywać przypadkowo, a więc staną się bezużyteczne. Miarą tej przypadkowości jest właśnie temperatura. Aby czerpać energię termiczną z układu, trzeba dysponować czymś zimniejszym niż ten układ.

[edytuj] Śmierć cieplna Wszechświata

Z II zasady termodynamiki wynika też hipoteza tzw. śmierci cieplnej Wszechświata. Miałaby ona polegać na tym, iż po jakimś czasie Wszechświat, jako całość, dojdzie do stanu równowagi termodynamicznej, czyli będzie miał jednakową temperaturę w każdym punkcie i wymiana energii termicznej całkowicie zaniknie, a co za tym idzie zanikną wszelkie inne rodzaje wymiany energii, które w ten czy inny sposób są zawsze związane ze zmianą temperatury. Teoria śmierci cieplnej jest jednak nadinterpretacją, wynikającą z przeniesienia rozumowania pochodzącego z fizyki fenomenologicznej w dziedzinę przekraczającą zakres jej stosowalności – do kosmologii. Taka interpretacja II zasady termodynamiki, zakłada bowiem, że Wszechświat jako całość jest układem zamkniętym, na co nigdy nie będzie dowodów eksperymentalnych. Drugim problemem jest fakt, że II zasada termodynamiki zawodzi w przypadku niektórych zjawisk kwantowych.

[edytuj] Paradoks nieodwracalności

Z interpretacją II zasady termodynamiki jest też związany swoisty paradoks. Z jednej strony wynika z niej, że wiele zjawisk, obserwowanych w skali makroskopowej może być całkowicie nieodwracalne. Z drugiej strony termodynamika statystyczna, z której ta zasada się wywodzi, zakłada, że każde jednostkowe zjawisko w skali mikroskopowej, czyli w skali pojedynczych cząstek jest odwracalne. Mimo że wszystkie zjawiska makroskopowe są sumą odwracalnych zjawisk mikroskopowych, przyjmuje się jednak - wbrew zdrowemu rozsądkowi - możliwość ich nieodwracalności. Paradoks ten przyczynił się do początkowego odrzucenia równania Boltzmanna, opisującego procesy nierównowagowe.

Ten paradoks wskazuje na ścisły związek między teorią a pomiarem w fizyce. Interpretacja pomiaru układów wielocząstkowych jest oparta na teoriach tworzonych dla układów makroskopowych. Można powiedzieć, że pomiary te dotyczą sum uśrednionych zjawisk mikroskopowych. Dla takich pomiarów koncepcja entropii jest niezbędna teoretycznie. Gdyby jednak dało się w jakiś sposób przejść do pomiaru tych zjawisk na poziomie pojedynczych cząstek, koncepcja entropii przestałaby być potrzebna. Liczba cząstek w rzeczywistych, makroskopowych układach doświadczalnych jest jednak bardzo duża (rzędu stałej Avogadra) i dlatego pomiar olbrzymiej większości zjawisk fizycznych na poziomie mikroskopowym jeszcze długo pozostanie poza zasięgiem nauki.

[edytuj] Przypisy

  1. "Fizyka statystyczna i termodynamika", R.S Ingarden, A. Jamiołkowski, R. Mrugała, PWN, Warszawa 1990, str. 95-96
  2. C.J.Adkins, "Equilibrium thermodynamics", Cambridge University Press, ISBN 0-521-27456-7

[edytuj] Zobacz też

Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu