New Immissions/Updates:
boundless - educate - edutalab - empatico - es-ebooks - es16 - fr16 - fsfiles - hesperian - solidaria - wikipediaforschools
- wikipediaforschoolses - wikipediaforschoolsfr - wikipediaforschoolspt - worldmap -

See also: Liber Liber - Libro Parlato - Liber Musica  - Manuzio -  Liber Liber ISO Files - Alphabetical Order - Multivolume ZIP Complete Archive - PDF Files - OGG Music Files -

PROJECT GUTENBERG HTML: Volume I - Volume II - Volume III - Volume IV - Volume V - Volume VI - Volume VII - Volume VIII - Volume IX

Ascolta ""Volevo solo fare un audiolibro"" su Spreaker.
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Kryteria zbieżności szeregów - Wikipedia, wolna encyklopedia

Kryteria zbieżności szeregów

Z Wikipedii

Kryteria zbieżności szeregów to grupa twierdzeń pozwalających ustalić czy dany szereg jest zbieżny czy nie. Jeżeli szereg spełnia warunki podane w kryterium, to przesądza to o jego zbieżności lub rozbieżności, w przeciwnym wypadku dane kryterium mówi o szeregu tylko tyle, że ten go nie spełnia. Korzystając z kryterium zbieżności, zwykle wyliczamy pomocnicze wielkości związane z szeregiem i na tej podstawie wydajemy osąd.

Niech dany będzie szereg ∑an o wyrazach rzeczywistych lub zespolonych.

Oto kilka najczęściej używanych kryteriów zbieżności szeregów liczbowych.

Spis treści

[edytuj] Warunek konieczny zbieżności

Jeżeli szereg ∑an jest zbieżny, to limn→∞ an = 0. Jeśli więc wyraz ogólny szeregu nie zbiega do 0, to szereg ten jest rozbieżny.

[edytuj] Warunek Cauchy'ego zbieżności

Dla szeregów liczbowych zachodzi następujący warunek zbieżności, pochodzący od Cauchy'ego:

Szereg liczbowy ∑an jest zbieżny wtedy i tylko wtedy, gdy:

\forall_{\varepsilon > 0} \exists_{n_0 \in N} \forall_{n\geq n_0} \forall_{k\in N} \left \vert \sum_{i=n}^{n+k} a_i \right \vert < \varepsilon

Jest to równoważne temu, że ciąg sum częściowych ciągu (an) jest ciągiem Cauchy'ego.

[edytuj] Zbieżność bezwzględna

Szereg ∑an nazywamy zbieżnym bezwzględnie, jeżeli zbieżny jest szereg ∑|an|. Jeżeli dany szereg jest zbieżny bezwzględnie, to jest on zbieżny również w zwykłym sensie.

Powyższe rozróżnienie jest istotne, może się bowiem zdarzyć, że dany szereg jest zbieżny, lecz nie jest zbieżny bezwzględnie – mówimy wtedy, że szereg jest zbieżny warunkowo. Zadziwiające twierdzenie Riemanna mówi, że można tak poprzestawiać wyrazy szeregu warunkowo zbieżnego liczb rzeczywistych, aby jako sumę nowego szeregu otrzymać dowolną, z góry zadaną liczbę (zobacz: szereg).

Wszystkie poniższe twierdzenia rozstrzygają o zbieżności bezwzględnej szeregu ∑an.

[edytuj] Kryterium d'Alemberta

Jeżeli granica ciągu |an+1|/|an| istnieje i jest mniejsza od 1, to szereg ∑an jest zbieżny; jeżeli granica ta jest większa od 1, szereg jest rozbieżny. Dla rozbieżności szeregu wystarczy zresztą, by istniała taka liczba N, że nierówność |an+1|/|an|≥1 była spełniona dla wszystkich n większych od N.

Jest to najprostsza wersja tego kryterium. Wersja nieco subtelniejsza: jeżeli granica górna ciągu |an+1|/|an| jest mniejsza niż 1, to szereg ∑an jest zbieżny.

Kryterium nie przesądza o zbieżności lub rozbieżności szeregu w przypadku gdy granica ta (lub odpowiednia granica górna) jest równa 1.

\lim_{n \to \infty} (\frac{a_{n+1}}{a_n}) <1 \implies szereg ∑an jest zbieżny

\lim_{n \to \infty} (\frac{a_{n+1}}{a_n}) >1 \implies szereg ∑an jest rozbieżny

\lim_{n \to \infty} (\frac{a_{n+1}}{a_n}) =1 \implies kryterium nie rozstrzyga

[edytuj] Kryterium Raabego

Jeżeli kryterium d'Alemberta nie rozstrzyga czy dany szereg jest zbieżny lub rozbieżny, warto skorzystać z kryterium Raabego:

\lim_{n \to \infty} n(\frac{a_n}{a_{n+1}}-1) >1 \implies szereg ∑an jest zbieżny

\lim_{n \to \infty} n(\frac{a_n}{a_{n+1}}-1) <1 \implies szereg ∑an jest rozbieżny

\lim_{n \to \infty} n(\frac{a_n}{a_{n+1}}-1) =1 \implies kryterium nie rozstrzyga

Należy zwrócić uwagę na fakt, że, aby szereg był zbieżny, granica z kryterium Raabego musi być większa od 1 - inaczej niż w przypadku kryterium d'Alemberta i Cauchy'ego.

[edytuj] Kryterium Cauchy'ego

Jeżeli granica ciągu \sqrt[n]{|a_n|} istnieje i jest mniejsza od 1, to szereg ∑an jest zbieżny; jeżeli granica ta jest większa od 1, szereg jest rozbieżny.

Jak w przypadku poprzedniego kryterium, jest to wersja uproszczona. Wersja subtelniejsza mówi, że jeśli granica górna ciągu \sqrt[n]{|a_n|} jest mniejsza od 1, to szereg jest zbieżny; jeżeli granica górna jest większa od 1, to szereg jest rozbieżny.

Kryterium Cauchy'ego nie przesądza nic o zbieżności szeregu w przypadku, gdy odpowiednia granica (lub granica górna) jest równa 1.

Kryterium Cauchy'ego jest silniejsze niż kryterium d'Alemberta – jeśli szereg spełnia warunek kryterium d'Alemberta, to spełnia warunek Cauchy'ego, ale nie na odwrót.

[edytuj] Kryterium całkowe

Szereg o wyrazie ogólnym an = f(n) jest zbieżny, jeżeli f(x) jest funkcją monotonicznie malejącą i całka niewłaściwa \int\limits_a^\infty f(x)\;dx jest zbieżna; natomiast jeżeli całka ta jest rozbieżna, to szereg o wyrazie ogólnym f(n) jest rozbieżny. Przy tym dolną granicę całkowania a należy tak obrać, żeby funkcja f(x) w przedziale a < x < \infty była oznaczona i nie miała punktów nieciągłości.

[edytuj] Kryterium porównawcze

Jeżeli wyrazy szeregu ∑an spełniają od pewnego N nierówność |an| ≤ bn i szereg ∑bn jest zbieżny, to również szereg ∑an jest zbieżny (i to - oczywiście - bezwzględnie).

Jeżeli natomiast wyrazy szeregu ∑an spełniają od pewnego N nierówność anbn ≥ 0 i szereg ∑bn jest rozbieżny, to również szereg ∑an jest rozbieżny.

Stosowanie tego kryterium wymaga pewnego zasobu szeregów, o których wiadomo, że są zbieżne. Często wygodnie jest porównywać dany szereg z szeregiem harmonicznym lub (rzadziej) geometrycznym.

[edytuj] Kryterium zagęszczania

Następujące proste kryterium również pochodzi od Cauchy'ego. Załóżmy, że szereg ∑an jest taki, że ciąg |an| jest monotonicznie malejący, a p jest liczbą naturalną. Jeżeli zbieżny jest szereg ∑pn·|apn|, to zbieżny jest szereg ∑an.

[edytuj] Kryterium ilorazowe (nazywane też kryterium porównawczym w postaci granicznej)

Jeżeli mamy szeregi ∑an, ∑bn i znamy typ (rozbieżny, zbieżny) jednego z nich, oraz 0 < limn→∞ (an/bn) < ∞, to drugi z nich jest tego samego typu.

Ponadto:

Jeżeli limn→∞ (an/bn) = 0 i ∑bn jest zbieżny, to ∑an jest zbieżny.

Jeżeli limn→∞ (an/bn) = ∞ i ∑an jest zbieżny, to ∑bn jest zbieżny.

[edytuj] Szeregi o wyrazach dowolnych

[edytuj] Kryterium Leibniza

Jeżeli dany jest ciąg liczb dodatnich a_1\ge a_2\ge a_3\ge \ldots jest zbieżny do 0, to szereg a_1-a_2+a_3-a_4\ldots jest zbieżny.

[edytuj] Kryterium Abela

Jeżeli szereg ∑an jest zbieżny, a ciąg (bn) jest monotoniczny i ograniczony, to szereg ∑anbn jest zbieżny.

[edytuj] Kryterium Dirichleta

Jeżeli mamy dany szereg postaci ∑anbn, gdzie ciąg (an) jest monotoniczny i zbieżny do 0, zaś ciąg sum częściowych szeregu ∑bn jest ograniczony, to szereg ∑anbn jest zbieżny.

[edytuj] Szeregi funkcyjne

Stub sekcji Ta sekcja jest zalążkiem. Jeśli możesz, rozbuduj ją.


[edytuj] Zobacz też

W innych językach

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu