Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Web Analytics
Cookie Policy Terms and Conditions Twierdzenie Talesa - Wikipedia, wolna encyklopedia

Twierdzenie Talesa

Z Wikipedii

Twierdzenie Talesa – jedno z najważniejszych twierdzeń całej geometrii euklidesowej. Tradycja przypisuje jego sformułowanie Talesowi z Miletu.

Spis treści

[edytuj] Teza

Jeżeli ramiona kąta przecięte są prostymi równoległymi, to odcinki wyznaczone przez te proste na jednym ramieniu kąta, są proporcjonalne do odpowiednich odcinków na drugim ramieniu kąta.[1]

Dla powyższych rysunków zachodzi: \frac{|AD|}{|AE|}=\frac{|DB|}{|EC|}=\frac{|AB|}{|AC|}


lub po przekształceniu: \frac{|AE|}{|EC|}=\frac{|AD|}{|DB|} oraz \frac{|AE|}{|AC|}=\frac{|AD|}{|AB|} a także \frac{|AC|}{|EC|}=\frac{|AB|}{|DB|}.


Często spotykaną nieścisłością jest takie formułowanie twierdzenia Talesa: \frac{|AD|}{|DE|}=\frac{|AB|}{|BC|}, ta równość jest oczywiście prawdziwa, ale wynika z podobieństwa trójkątów ADE i ABC a nie z samego twierdzenia Talesa.

[edytuj] Dowód

Najstarszy zachowany dowód twierdzenia Talesa zamieszczony jest w VI. księdze Elementów Euklidesa.

Dowód oparty jest na dwóch lematach:

  • Lemat I. Jeśli dwa trójkąty mają równe wysokości, to stosunek ich pól jest równy stosunkowi długości ich podstaw.
  • Lemat II. Jeśli dwa trójkąty mają wspólną podstawę i równe wysokości, to ich pola są równe.

1. Trójkąty CED i EAD mają wspólną wysokość h', więc na mocy lematu I.:

\frac{|CE|}{|EA|}=\frac{S_{CED}}{S_{EAD}}.

2. Trójkąty CED i BDE mają wspólną podstawę ED i równe wysokości h, więc na mocy lematu II.:

SCED = SBDE, stąd \frac{S_{CED}}{S_{EAD}}=\frac{S_{BDE}}{S_{EAD}}.

3. Trójkąty BDE i EAD ma wspólną wysokość, więc na mocy lematu I.:

\frac{S_{BDE}}{S_{EAD}}=\frac{|BD|}{|DA|}.

Łącząc w jeden zapis otrzymujemy:

\frac{|CE|}{|EA|}=\frac{S_{CED}}{S_{EAD}}=\frac{S_{BDE}}{S_{EAD}}=\frac{|BD|}{|DA|}, czego należało dowieść.
Ten artykuł wymaga dopracowania.
Należy w nim poprawić: Sformułowanie nie jest precyzyjne i można je zrozumieć w taki sposób, że twierdzenie odwrotne nie jest prawdziwe..
Więcej informacji co należy poprawić, być może znajdziesz w dyskusji tego artykułu lub na odpowiedniej stronie. W pracy nad artykułem należy korzystać z zaleceń edycyjnych. Po naprawieniu wszystkich błędów można usunąć tę wiadomość.
Możesz także przejrzeć pełną listę stron wymagających dopracowania.

[edytuj] Twierdzenie odwrotne do twierdzenia Talesa

Jeżeli ramiona kąta przecięte są kilkoma prostymi i odcinki powstałe na jednym ramieniu kąta są proporcjonalne do odpowiednich odcinków na drugim ramieniu kąta, to dane proste są równoległe.

[edytuj] Zastosowania

[edytuj] Podział odcinka w danym stosunku

Dane są dwa odcinki o długościach a i b. Dany odcinek AB podzielić w stosunku a:b.

grafika:Podzial tales.svg

Rzut oka na rysunek i twierdzenie Talesa pozwalają stwierdzić, że punkt P dzieli odcinek w wymaganym stosunku. Powyższa konstrukcja była podstawą greckiej arytmetyki – pozwalała mnożyć i dzielić odcinki, utożsamiane przez Greków z liczbami.

[edytuj] Zobacz też

[edytuj] Przypisy

  1. Oryginalne twierdzenie wraz z twierdzeniem odwrotnym można znaleźć np. na stronie [1] jako twierdzenie 2 księgi VI.

Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu