Логика высказываний
Материал из Википедии — свободной энциклопедии
Логика высказываний — раздел логики, занимающийся изучением логических высказываний, операций над ними и их свойств.
Содержание |
[править] Основные понятия
Базовыми понятиями логики высказываний являются пропозициональная переменная — переменная, значением которой может быть логическое высказывание, — и (пропозициональная) формула, определяемая индуктивно следующим образом:
- Если P — пропозициональная переменная, то P — формула.
- Если A — формула, то
— формула.
- Если A и B — формулы, то
,
и
— формулы.
- Других формул нет.
Знаки и
(отрицание, конъюнкция, дизъюнкция и импликация) называются пропозициональными связками. Подформулой называется часть формулы, сама являющаяся формулой. Собственной подформулой называется подформула, не совпадающая со всей формулой.
[править] Соглашения о скобках
Поскольку в построенных по определению формулах оказывается слишком много скобок, иногда и не обязательных для однозначного понимания формулы, математики приняли соглашения о скобках, по которым некоторые из скобок можно опускать. Записи с опущенными скобками восстанавливаются так:
- Если опущены внешние скобки, то они восстанавливаются.
- Если рядом стоят две конъюнкции или дизъюнкции (например,
), то в скобки заключается сначала самая левая часть (т.е. две подформулы со связкой между ними). (Говорят также, что эти связки левоассоциативны.)
- Если рядом стоят разные связки, то скобки расставляются согласно приоритетам:
и
(от высшего к низшему).
Когда говорят о длине формулы, имеют в виду длину подразумеваемой (восстанавливаемой) формулы, а не сокращённой записи.
Например: запись означает формулу
, а её длина равна 10.
[править] Истинностное значение
Оценкой пропозициональных переменных называется функция из множества всех пропозициональных переменных в множество {0, 1} (т.е. множество истинностных значений). Основной задачей логики высказываний является установление истинностного значения формулы, если дана оценка (т.е. определены истинностные значения входящих в неё переменных). Истинностное значение формулы в таком случае определяется индуктивно (с шагами, которые использовались при построении формулы) с использованием таблиц истинности связок.
Формула, которая при всех оценках переменной принимает значение 1, называется тавтологией, значение 0 — противоречием.
Например: формула в классическом исчислении высказываний является тавтологией, а
— противоречием.