New Immissions/Updates:
boundless - educate - edutalab - empatico - es-ebooks - es16 - fr16 - fsfiles - hesperian - solidaria - wikipediaforschools
- wikipediaforschoolses - wikipediaforschoolsfr - wikipediaforschoolspt - worldmap -

See also: Liber Liber - Libro Parlato - Liber Musica  - Manuzio -  Liber Liber ISO Files - Alphabetical Order - Multivolume ZIP Complete Archive - PDF Files - OGG Music Files -

PROJECT GUTENBERG HTML: Volume I - Volume II - Volume III - Volume IV - Volume V - Volume VI - Volume VII - Volume VIII - Volume IX

Ascolta ""Volevo solo fare un audiolibro"" su Spreaker.
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Логика первого порядка — Википедия

Логика первого порядка

Материал из Википедии — свободной энциклопедии

Логика первого порядка (исчисление предикатов) — формальное исчисление, допускающее высказывания относительно переменных, фиксированных функций, и предикатов. Расширяет логику высказываний. В свою очередь является частным случаем логики высшего порядка.

Содержание

[править] Основные определения

Язык логики первого порядка строится на основе сигнатуры, состоящей из множества функциональных символов \mathcal{F} и множетсва предикатных символов \mathcal{P}. С каждым функциональным и предикатным символом связана арность, то есть число возможных аргументов. Кроме того используются следующие дополнительные символы

  • Символы переменных (обычно x,y,z,x1,y1,z1,x2,y2,z2, и т. д.),
  • Пропозициональные связки: \lor,\land,\neg,\to,
  • Кванторы: всеобщности \forall и существования \exists,
  • Cлужебные символы: скобки и запятая.

Перечисленные символы вместе с символами из \mathcal{P} и \mathcal{F} образуют Алфавит логики первого порядка. Более сложные конструкции определяются индуктивно:

  • Терм — есть символ переменной, либо имеет вид f(t_1,\ldots,t_n), где f — функциональный символ арности n, а t_1,\ldots,t_n — термы.
  • Атом — имеет вид p(t_1,\ldots,t_n), где p — предикатный символ арности n, а t_1,\ldots,t_n — термы.
  • Формула — это либо атом, либо одна из следующих конструкций: \neg F, F_1\lor F_2, F_1\land F_2, F_1\to F_2, \forall x F, \exists x F, где F,F1,F2 — формулы, а x — переменная.

Переменная x называется связанной в формуле F, если F имеет вид \forall x G либо \exists x G, или же представима в одной из форм \neg H, F_1\lor F_2, F_1\land F_2, F_1\to F_2, причем x уже связанна в H, F1 и F2. Если x не связанна в F, ее называют свободной в F. Формулу без свободных переменных называют замкнутой формулой, или предложением.

[править] Аксиоматика и доказательство формул

Система логических аксиом логики первого порядка состоит из аксиом исчисления высказываний дополненной двумя новыми аксиомами:

  • \forall x A \to A[t/x],
  • A[t/x] \to \exists x A,

где A[t / x] — формула, полученная в результате подстановки терма t вместо переменной x в формуле A.

Правило вывода только одно — Modus ponens:

{A, A \to B}\over B

[править] Интерпретация

В классическом случае интерпретация формул логики первого порядка задается на модели первого порядка, которая определяется следующими данными

  • Несущее множество \mathcal{D},
  • Семантическая функция σ, отображающая
    • каждый n-арный функциональный символ f из \mathcal{F} в n-арную функцию \sigma(f):\mathcal{D}\times\ldots\times\mathcal{D}\rightarrow\mathcal{D},
    • каждый n-арный предикатный символ p из \mathcal{P} в n-арное отношение \sigma(p)\subseteq\mathcal{D}\times\ldots\times\mathcal{D}.

Обычно принято, отождествлять несущее множество \mathcal{D} и саму модель, подразумевая неявно семантическую функцию, если это не ведет к неоднозначности.

Предположим s — функция, отображающая каждую переменную в некоторый элемент из \mathcal{D}, которую мы будем называть подстановкой. Интерпретация [\![t]\!]_s терма t на\mathcal{D} относительно подстановки s задается индуктивно

  • [\![x]\!]_s = s(x), если x — переменная,
  • [\![f(x_1,\ldots,x_n)]\!]_s = \sigma(f)(\![x_1]\!]_s,\ldots,\![x_n]\!]_s)

В таком же духе определяется отношение истинности \models_s формул на \mathcal{D} относительно s

  • \mathcal{D}\models_s p(t_1,\ldots,t_n), тогда и только тогда, когда \sigma(p)( \![x_1]\!]_s,\ldots,\![x_n]\!]_s),
  • \mathcal{D}\models_s \neg\phi, тогда и только тогда, когда \mathcal{D}\models_s \phi — ложно,
  • \mathcal{D}\models_s \phi\land\psi, тогда и только тогда, когда \mathcal{D}\models_s \phi и \mathcal{D}\models_s \psi истинны,'
  • \mathcal{D}\models_s \phi\lor\psi, тогда и только тогда, когда \mathcal{D}\models_s \phi или \mathcal{D}\models_s \psi истинно,
  • \mathcal{D}\models_s \phi\to\psi, тогда и только тогда, когда \mathcal{D}\models_s \phi влечет \mathcal{D}\models_s \psi,
  • \mathcal{D}\models_s \exists x\, \phi, тогда и только тогда, когда \mathcal{D}\models_{s'} \phi для некоторой подстановки s', котрая отличается от s только на переменной x,
  • \mathcal{D}\models_s \forall x\, \phi, тогда и только тогда, когда \mathcal{D}\models_{s'} \phi для всех подстановок s', котрые отличается от s только на переменной x.

Формула φ, истинна на \mathcal{D}, что обозначается как \mathcal{D}\models \phi, если \mathcal{D}\models_s \phi, для всех подстановок s. Формула φ называется общезначимой, что обозначается как \models \phi, если \mathcal{D}\models \phi для всех моделей \mathcal{D}. Формула φ называется выполнимой , если \mathcal{D}\models \phi хотябы для одной \mathcal{D}.

[править] Свойства и основные результаты

Логика первого порядка обладает рядом полезных свойств, которые делают ее очень привлекательной в качестве основного инструмента формализации математики. Главными из них являются полнота и непротиворечивость. При этом если непротиворечивость более или менее очевидна, то полнота — нетривиальный результат полученный Гёделем в 1930 году (теорема Гёделя о полноте). По сути теорема Гёделя устанавливает фундаментальную эквивалентность понятий доказуемости и общезначимости.

Логика первого порядка обладает свойством компактности, что означает: если некоторое множество формул не выполнимо, то невыполнимо также некоторое его конечное подмножество.

Согласно теореме Левенгейма-Сколема если множество формул имеет модель, то оно также имеет модель не более чем счетной мощности. С этой теоремой связан парадокс Сколема, который однако является лишь мнимым парадоксом.

[править] Использование

[править] Логика первого порядка как формальная модель рассуждений

Являясь формализованым аналогом обычной логики логика первого порядка дает возможность строго рассуждать об истинности и ложности утверждений и об их взимосвязи, в часности о логическом следовании одного утверждения из другого, или например об их эквивалентности. Рассмотрим классический пример формализации утверждений естественного языка в логике первого порядка.

Возьмем рассуждение «Каждый человек смертен. Конфуций — человек. Следовательно, Конфуций смертен». Обозначим «x есть человек» через ЧЕЛОВЕК(x) и «x смертен» через СМЕРТЕН(x). Тогда утверждение «каждый человек смертен» может быть представлено формулой: (∀x)(ЧЕЛОВЕК(x) → СМЕРТЕН(x)) утверждение «Конфуций — человек» формулой ЧЕЛОВЕК(Конфуций), и «Конфуций смертен» формулой СМЕРТЕН(Конфуций). Утверждение в целом теперь может быть записано формулой

(∀x)(ЧЕЛОВЕК(x) → СМЕРТЕН(x)) ∧ ЧЕЛОВЕК(Конфуций) → СМЕРТЕН(Конфуций)

[править] Обобщения

[править] Литература

  • Гильберт Д., Аккерман В. Основы теоретической логики. М., 1947
  • Клини С. К. Введение в метаматематику. М., 1957
  • Мендельсон Э. Введение в математическую логику. М., 1976
  • Новиков П. С. Элементы математической логики. М., 1959
  • Черч А. Введение в математическую логику, т. I. М. 1960
 

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu