Реляционная алгебра
Материал из Википедии — свободной энциклопедии
Реляционная алгебра — формальная система манипулирования отношениями в реляционной модели данных. Существует в двух несколько различающихся вариантах:
- алгебра Кодда (Э. Кодд, 1970)
- алгебра A (К. Дейт, Х. Дарвен)
Наряду с реляционным исчислением является способом получения результирующего отношения в реляционной модели данных.
[править] Замкнутость реляционной алгебры
Реляционная алгебра представляет собой набор операторов, использующих отношения в качестве аргументов и возвращающих отношения в качестве результата. Таким образом, реляционный оператор f выглядит как функция с отношениями в качестве аргументов:
R = f(R1, R2, …, Rn)
Реляционная алгебра является замкнутой, т. к. в качестве аргументов в реляционные операторы можно подставлять другие реляционные операторы, подходящие по типу:
R = f(f1(R11, R12, …), f2(R21, R22,…),…)
В реляционных выражениях можно использовать вложенные выражения сколь угодно сложной структуры.
Каждое отношение обязано иметь уникальное имя в пределах базы данных. Имя отношения, полученного в результате выполнения реляционной операции, определяется в левой части равенства. Однако можно не требовать наличия имен от отношений, полученных в результате реляционных выражений, если эти отношения подставляются в качестве аргументов в другие реляционные выражения. Такие отношения называют неименованными отношениями. Неименованные отношения реально не существуют в базе данных, а только вычисляются в момент вычисления значения реляционного оператора.