Ультрафиолетовое излучение
Материал из Википедии — свободной энциклопедии
- У термина «Ультрафиолет» существуют и другие значения.
Электромагнитное излучение |
---|
Синхротронное |
Квадрупольное |
Магнитотормозное |
Равновесное |
Видимое |
Черенковское |
Двухфотонное |
Переходное |
Монохроматическое |
Рентгеновское |
Гамма-излучение |
Ультрафиолетовое |
Инфракрасное |
Ионизирующие |
Реликтовое |
Хокинга |
Микроволновое |
Магнито-дрейфовое |
Вынужденное |
Ультрафиоле́товое излуче́ние (ультрафиолет, УФ, UV) — электромагнитное излучение, занимающее диапазон между видимым и рентгеновским излучением (380 — 10 нм, 7,9×1014 — 3×1016 Гц). Диапазон условно делят на ближний (380—200 нм) и далёкий, или вакуумный (200—10 нм) ультрафиолет, последний так назван, поскольку интенсивно поглощается атмосферой и исследуется только вакуумными приборами.
Содержание |
[править] История открытия
Вскоре после того, как было обнаружено инфракрасное излучение, немецкий физик Иоганн Вильгельм Риттер начал поиски излучения и в противоположном конце спектра, с длиной волны короче, чем у фиолетового цвета. В 1801 году он обнаружил, что хлорид серебра, разлагающийся под действием света, быстрее разлагается под действием невидимого излучения за пределами фиолетовой области спектра. Тогда, многие ученые, включая Риттера, пришли к соглашению, что свет состоит из трех отдельных компонентов: окислительного или теплового (инфракрасного) компонента, осветительного компонента (видимого света), и восстановительного (ультрафиолетового) компонента. В то время ультрафиолетовое излучение называли также «актиническим излучением».
Идеи о единстве трёх различных частей спектра были впервые озвучены лишь в 1842 году в трудах Александра Беккереля, Македонио Меллони и др.
[править] Воздействие на здоровье человека
По воздействию на человека выделяют три диапазона: UVA (380—315 нм), UVB (315—280 нм) и UVC (280—10 нм).
[править] Сфера применения
[править] Чёрный свет
Лампа чёрного света — лампа, которая излучает преимущественно в длинноволновой ультрафиолетовой области спектра (диапазон UVA) и даёт очень немного видимого света.
Для защиты документов от подделки их часто снабжают ультрафиолетовыми метками, которые видны только в условиях ультрафиолетового освещения. Большинство паспортов, а также банкноты различных стран содержат защитные элементы в виде краски или нитей, светящихся в ультрафиолете.
Ультрафиолетовое излучение, даваемое лампами чёрного света является достаточно мягким и оказывает наименее серъёзное негативное влияние на здоровье человека.
[править] Флюоресцентные лампы
[править] Стерилизация
Ультрафиолетовые (т.н. кварцевые) лампы используются для стерилизации помещений и инструментов в биологических лабораториях и медицинских учреждениях. В наиболее распространённых ртутных лампах низкого давления 86 % излучения приходится на длину волны 254 нм, что хорошо согласуется с одним из двух пиков кривой бактерицидной эффективности (т.е. эффективности поглощения ультрафиолета молекулами ДНК). Один из этих пиков находится в районе длины волны излучения равной 265 нм, а второй — 185 нм. Излучение с длиной волны 185 нм оказывает большее влияние на ДНК, однако кварцевое стекло, используемое для изготовления колбы лампы, также как и другие природные вещества (например вода) менее прозрачно для волн этого диапазона и более прозрачно для 265 нм волн.
Бактерицидное УФ излучение на этих длинах волн вызывает димеризацию тимина в молекулах ДНК. Накопление таких изменений в ДНК микроорганизмов приводит к замедлению темпов их размножения и вымиранию.
В связи с тем, что подобные лампы воздействуют только на те микроорганизмы, которые непосредственно подвергаются воздействию их излучения, возникает проблема недостаточного стерилизационного эффекта в затенённых областях помещения. Именно по этой причине кварцевые лампы применяются только в комплексе с другими методиками стерилизации.
[править] Дезинфекция питьевой воды
Метод дезинфекции с использованием УФ-излучения доказал свою эффективность при дезактивации переносимых водой болезнетворных микроорганизмов и вирусов без ухудшения вкуса и запаха воды и без внесения в воду нежелательных побочных продуктов. Такой метод дезинфекции завоевывает популярность в качестве альтернативы или дополнения к традиционным средствам дезинфекции, таким как хлор, из-за своей безопасности, экономичности и эффективности. Метод УФ-дезинфекции не обеспечивает полной дезинфекции остаточных загрязняющих веществ, поэтому в больших системах распределения он должен сочетаться с применением дополнительных средств дезинфекции.
Принцип действия УФ-излучения — УФ-дезинфекция выполняется при облучении находящихся в воде микроорганизмов УФ- излучением определенной интенсивности в течение определенного периода времени. В результате такого облучения микроорганизмы «микробиологически» погибают, т. к. они теряют способность воспроизводства. УФ-излучение, имеющее бактерицидную длину волны 260 нм или близкую длину волны, проникает сквозь стенку клетки переносимого водой микроорганизма и поглощается ДНК, называемой генетической цепочкой микроорганизма, в результате чего процесс воспроизводства микроорганизма прекращается.
[править] Астрономия
[править] Спектрометрия
[править] Анализ минералов
Многие минералы содержат вещества, которые при освещении ультрафиолетовым излучением начинают испускать видимый свет. Каждая примесь светится по-своему, что позволяет по характеру свечения определять состав данного минерала. А. А. Малахов в своей книге «Занимательно о геологии» (М., «Молодая гвардия», 1969. 240 с) рассказывает об этом так: «Необычное свечение минералов вызывают и катодный, и ультрафиолетовый, и рентгеновский лучи. В мире мёртвого камня загораются и светят наиболее ярко те минералы, которые, попав в зону ультрафиолетового света, рассказывают о мельчайших примесях урана или марганца, включённых в состав породы. Странным „неземным“ цветом вспыхивают и многие другие минералы, не содержащие никаких примесей. Целый день я провёл в лаборатории, где наблюдал люминесцентное свечение минералов. Обычный бесцветный кальцит расцвечивался чудесным образом под влиянием различных источников света. Катодные лучи делали кристалл рубиново-красным, в ультрафиолете он загорался малиново-красными тонами. Два минерала — флюорит и циркон — не различались в рентгеновских лучах. Оба были зелёными. Но стоило подключить катодный свет, как флюорит становился фиолетовым, а циркон — лимонно-жёлтым.» (с. 11).
[править] Фотолитография
[править] Ловля насекомых
Ультрафиолетовое излучение нередко применяются при ловле насекомых на свет (нередко в сочетании с лампами, излучающими в видимой части спектра). Это связано с тем, что у большинства насекомых видимый диапазон смещён, по сравнению с человеческим зрением, в коротковолновую часть спектра: насекомые не видят того, что человек воспринимает как красный, но видят мягкий ультрафиолетовый свет.