เซตคันทอร์
จากวิกิพีเดีย สารานุกรมเสรี
เซตคันทอร์ (อังกฤษ: Cantor set) เป็นเซตในทางคณิตศาสตร์ที่เสนอขึ้นโดยนักคณิตศาสตร์ชาวเยอรมัน เกออร์ก คันทอร์ เป็นเซตที่ประกอบด้วยจุดบนเส้นตรงที่มีคุณสมบัติที่พิเศษและซับซ้อน จากการพิจารณาเซตนี้ คันเตอร์และนักคณิตศาสตร์ท่านอื่น ๆ วางรากฐานวิชาทอพอโลยีทั่วไป (General topology) ถึงแม้ว่าคันเตอร์จะนิยามเซตในแบบกว้าง ๆ และเป็นนามธรรม เซตคันเตอร์ที่แพร่หลายสุดคือ เซตเทอร์นารี (Cantor ternary set) ซึ่งสร้างโดยการนำเศษหนึ่งส่วนสามของเส้นตรงออก
[แก้] วิธีการสร้างเซตเทอร์นารี
เซตเทอร์นารีของคันทอร์ สร้างโดยการลบช่วงเปิดขนาดหนึ่งในสามของเส้นตรงแต่ละท่อนออกไปเรื่อย ๆ โดยเริ่มจากเส้นตรงหรือช่วงปิด [0, 1] ลบครั้งแรกจะเหลือ [0, 1/3] ∪ [2/3, 1] ซึ่งเป็นเส้นตรงสองท่อน ถัดจากนี้ก็ลบหนึ่งในสามของแต่ละท่อนไปเรื่อย ๆ ไม่มีที่สิ้นสุด เซตเทอร์นารีของคันทอร์ คือเซตของจุดในช่วง [0, 1] ที่เหลือจากการลบ
รูปต่อไปนี้แสดงการลบ 6 ครั้งแรกในการสร้างเซตเทอร์นารี
เซตคันทอร์รูปแบบอื่น ๆ ก็ล้วนถูกสร้างด้วยวิธีแบบเดียวกันและมีคุณสมบัติเหมือนกับเซตเทอร์นารี ต่อไปจะกล่าวถึงเซตคันทอร์โดยใช้เซตเทอร์นารีเป็นตัวอย่างการอธิบาย
[แก้] อะไรอยู่ในเซตคันทอร์
เนื่องจากเซตคันทอร์ถูกนิยามด้วยจุดที่เหลือจากการลบ ถ้าคำนวนความยาวทั้งหมดที่ถูกลบออกไปด้วยอนุกรมเรขาคณิต
ดังนั้นส่วนที่หลงเหลือจากการลบ คือ 1 – 1 = 0 นั่นคือเซตคันทอร์มีการวัดเป็นศูนย์ แต่เซตคันทอร์ไม่ใช่เซตว่าง ตัวอย่างเช่น จุด 1/3 และ 2/3 ที่เหลือจากการลบครั้งแรกจะไม่ถูกลบในขั้นถัด ๆ ไป ทั้งสองจุดนี้เป็นสมาชิกของเซต
![]() |
เซตคันทอร์ เป็นบทความเกี่ยวกับ คณิตศาสตร์ ที่ยังไม่สมบูรณ์ ต้องการตรวจสอบ เพิ่มเนื้อหา หรือเพิ่มแหล่งอ้างอิง คุณสามารถช่วยเพิ่มเติมหรือแก้ไข เพื่อให้สมบูรณ์มากขึ้น ข้อมูลเกี่ยวกับ เซตคันทอร์ ในภาษาอื่น อาจสามารถหาอ่านได้จากเมนู ภาษาอื่น ด้านซ้ายมือ |