仙女座星系
维基百科,自由的百科全书
星系 | 星系表 |
---|---|
觀測資料 (曆元 J2000) |
|
星座 | 仙女座 |
赤經 | 00h 42m 44.3s[1] |
赤緯 | +41° 16′ 9″[1] |
紅位移 | -301 ± 1 km/s[3] |
距離 | 2.52 ± 0.14 Mly (770 ± 40 kpc)[2] |
分類 | SA(s)b[1] I-II[來源請求] |
視直徑 (V) | 190′ × 60′[1] |
視星等 (V) | +4.36[1] |
附註 | |
其他名稱 | |
M31, NGC 224, UGC 454, PGC 2557[1]
|
仙女座星系 (萬國拼音為:/ˌanˈdrɒmədə/, 也稱為梅西爾 31、M31或NGC 224,早期的文件中曾經稱為仙女座星雲)是一個螺旋星系,距離大約230萬光年,[2] 位於仙女座的方向上,是人類肉眼可見(3.5等星)最遠的深空天體。 仙女座星系被相信是本星系群中最大的星系,本星系群的成員有仙女星系、銀河系、三角座星系,還有大約50個小星系。但根據改進的測量技術和最近研究的數據結果,科學家現在相信銀河系有許多的暗物質,並且可能是在這個集團中質量最大的。[7] 然而,史匹哲太空望遠鏡最近的觀測顯示仙女座星系有將近一兆(1012)顆恆星,數量遠比我們的銀河系為多。[8]在2006年重新估計銀河系的質量大約是仙女座星系的~80%,大約是7.1×1011M☉.[3]
仙女座星系在適度黑暗的天空環境下很容易用肉眼看見,但是如此的天空僅存在於小鎮、被隔絕的區域、和離人口集中區域很遠的地方,只受到輕度光污染的環境下。肉眼看見的仙女座星系非常小,因為它只有中心一小塊的區域有足夠的亮度,但是這個星系完整的角直徑有滿月的七倍大。
目录 |
[编辑] 觀測簡史
最早的仙女座星系觀測紀錄可能出自波斯的天文學家Al Sufi,[9]他描述它是"小雲",星圖上的標記在那個時代也是小雲。[9] 第一個以望遠鏡進行觀測和記錄是Simon Marius[9],時為1612年。在1764年梅西爾將他編目為M31,並不正確地相信Simon Marius為發現者,卻未察覺Al Sufi在更加早期的工作。在1785年,天文學家威廉·赫歇爾注意到在星系的核心區域有偏紅色的雜色,使他相信這是所有星雲中最靠近的"大星雲",並依據星雲的顏色和亮度估計(並不正確)距離應在天狼星的2,000倍之內。[10]
威廉·哈金斯在1864年觀察仙女座星系的光譜,注意到與氣體星雲不同。[11] 仙女座星系的光譜是在頻率上連續的連續光譜上疊加上了暗線,很像是單獨的一顆恆星,因此他推論仙女座星系具有恆星的本質。
在1885年,一顆超新星出現在仙女座星系(現在知道是仙女座 S),這是第一次看見如此遙遠星系中的恆星。在當時,他的亮度被低估了,只被認為是一顆新星,因此稱為 1885新星。
這個星系的第一張照片是Isaac Roberts於1887年在他坐落在英國索賽克斯郡的私人天文台拍攝的。長時間的曝光使世人第一次看見她的螺旋結構。[12] 可是,在當時這類被認為星雲的物體,一般都相信是在我們銀河系內的天體,羅伯茨也錯誤的相信M31和類似的螺旋星雲實際上都是正在形成的太陽系、衛星和誕生中的行星。
M31相對於太陽系的徑向速度在1912年被Vesto Slipher在羅威爾天文台使用光譜儀測量出來。相對於太陽系每秒300公里(186英里/秒)的速度,這結果事是當時最快的速度記錄。[13]
[编辑] 島宇宙
在1917年,希伯·柯蒂斯觀測到M31內的一顆新星,搜尋照相的記錄又找到了11顆。柯蒂斯注意到這些新星的平均光度約為10等,遠低於發生在銀河系內的星等。這一結果使估計的距離提高至500,000光年,也是他成為"島宇宙"假說的擁護者。此一假說認為螺旋星雲也是獨立的星系。[14]
在1920年,發生了哈洛·夏普利和希伯·柯蒂斯之間的大辯論,就銀河系、螺旋星雲、和宇宙的尺度進行辯論。為了支持他所聲稱的M31是外在的星系,柯蒂斯提出我們自己的銀河系也有塵埃雲造成類似的黑色小道,並且有明顯的都卜勒位移。
1925年,當哈柏第一次在星系的照片上辨認出了銀河系外的造父變星之後,辯論便平息了。這些使用2.5公尺(100 英吋.)反射鏡拍攝的照片,使M31的距離得以被確認。他的測量決定性的證實這些恆星和氣體不在我們的銀河系之內,而整體都是離我們銀河系有極大距離的一個星系。[15]
這個星系在星系的研究中扮演著一個重要的角色,因為它雖然不是最近的星系,卻是距離最近的一個巨大螺旋星系。在1943年,沃爾特·巴德是第一位將仙女座星系核心區域的恆星解析出來的人,基於他對這個星系的觀測,他分辨出兩種不同星族的恆星,他稱呼在星系盤中年輕的、高速運動的恆星為第一星族,在球核年老的、偏紅色的是第二星族,這個命名的原則隨後也被引用在我們的銀河系內,以及其他的各種場合。(恆星分為二個星族的現象歐特在此之前就注意到了。) [16]巴德博士也發現造父變星有兩種不同的型態,使得對M31的距離估計又增加了一倍,也對其餘的宇宙產生影響。
仙女座星系的第一張無線電圖是在1950年代由約翰·鮑德溫 和劍橋無線電天文小組合作共同完成的。在2C無線電天文目錄上,仙女座星系的核心被編目為2C 56。
[编辑] 一般資訊
仙女座星系以大約300公里/秒(180 英里/秒)的速度近太陽,所以他是少數藍移的星系之一。將太陽系在銀河內的速度考量進去,將會發現仙女座星系以100~140公里/秒(62–87 英里/秒)的速度接近我們的銀河系。[17]即使如此,這並不意味著未來會和銀河系發生碰撞,因為我們並不知道仙女座星系的橫向速度。即使會發生碰撞,也是30億(109)年後的事情。在這種情況下,兩個星系會合併成一個更巨大的星系。[18] 在星系群中這種事件是經常發生的。
在1953年,因為發現有另一種較暗的造父變星,測量的仙女座星系距離被增加了一倍。在1990年代,希巴古斯衛星利用造父變星重新校正距離,仙女座星系的距離又被修正為290萬光年。不幸的是,所有的造父變星都遠在希巴古斯能精確測量的距離之外,因此希巴古斯測得的距離被認為是不可靠的。
In 2005, a group of astronomers consisting of Ignasi Ribas (CSIC, IEEC) and his colleagues announced the discovery of an eclipsing binary star in the Andromeda Galaxy. The binary star, designated M31VJ00443799+4129236[19], has two luminous and hot blue stars of types O and B. By studying the eclipses of the stars, which occur every 3.54969 days, the astronomers were able to measure their sizes. Knowing the sizes and temperatures of the stars they were able to measure the absolute magnitude of the stars. When the visual and absolute magnitudes are known, the distance to the star can be measured. The stars lie at the distance of 2.52 ± 0.14 million light-years and the whole Andromeda Galaxy at about 2.5 million light-years.[2] This new value is in excellent agreement with the previous, independent Cepheid-based distance value.
Current mass estimates for the Andromeda halo (including dark matter) give a value of approximately 1.23 × 1012 M☉[20] (or 1.2 million million solar masses) compared to 1.9 × 1012 M☉ for the Milky Way. Thus M31 may be less massive than our own galaxy, although the error range is still too large to say for certain. M31 does contain many more stars than our own galaxy and has a much larger size.
In particular, M31 appears to have significantly more common stars than the Milky Way, and the estimated luminosity of M31 is double that of our own galaxy.[21] However the rate of star formation in the Milky Way is much higher, with M31 only producing about one solar mass per year compared to 3–5 solar masses for the Milky Way. The rate of novae in the Milky Way is also double that of M31.[22] This suggests that M31 has experienced a great star formation phase in its past, while the Milky Way is in the middle of a current star formation phase. This could mean that in the future, the number of stars in the Milky Way will match the number observed in M31.
[编辑] 結構
Based on its appearance in visible light, the Andromeda galaxy is classified as an SA(s)b galaxy in the de Vaucouleurs-Sandage extended classification system of spiral galaxies.[1] However, data from the 2MASS survey showed that the bulge of M31 has a box-like appearance, which implies that the galaxy is actually a barred galaxy with the bar viewed nearly directly along its long axis.[23] Andromeda is also a LINER-type galaxy (Low-Ionization Nuclear Emission-line Region), the most common class of active nuclei galaxies.
In 2005, astronomers used the Keck telescopes to show that the tenuous sprinkle of stars extending outward from the galaxy is actually part of the main disk itself.[24] This means that the spiral disk of stars in Andromeda is three times larger in diameter than previously estimated. This constitutes evidence that there is a vast, extended stellar disk that makes the galaxy more than 220,000 light-years in diameter. Previously, estimates of Andromeda's size ranged from 70,000 to 120,000 light-years across.
The galaxy is inclined an estimated 77° relative to the Earth (where an angle of 90° would be viewed directly from the side.) Analysis of the cross-sectional shape of the galaxy appears to demonstrate a pronounced, S-shaped warp, rather than just a flat disk.[25] A possible cause of such a warp could be gravitational interaction with the satellite galaxies near M31.
Spectroscopic studies have provided detailed measurements of the rotational velocity of this galaxy at various radii from the core. In the vicinity of the core, the rotational velocity climbs to a peak of 225 kilometres per second (140 miles/sec.) at a radius of 1,300 light-years, then descends to a minimum at 7,000 light-years where the rotation velocity may be as low as 50 kilometres per second (31 miles/sec.). Thereafter the velocity steadily climbs again out to a radius of 33,000 light-years, where it reaches a peak of 250 kilometres per second (155 miles/sec.). The velocities slowly decline beyond that distance, dropping to around 200 kilometres per second (124 miles/sec.) at 80,000 light-years. These velocity measurements imply a concentrated mass of about 6 × 109 M☉ in the nucleus. The total mass of the galaxy increases linearly out to 45,000 light-years, then more slowly beyond that radius.[26]
The spiral arms of Andromeda are outlined by a series of H II regions that Baade described as resembling "beads on a string". They appear to be tightly wound, although they are more widely spaced than in our galaxy.[27] Rectified images of the galaxy show a fairly normal spiral galaxy with the arms wound up in a clockwise direction. There are two continuous trailing arms that are separated from each other by a minimum of about 13,000 light-years. These can be followed outward from a distance of roughly 1,600 light-years from the core. The most likely cause of the spiral pattern is thought to be interaction with M32. This can be seen by the displacement of the neutral hydrogen clouds from the stars.[28]
In 1998, images from the European Space Agency's Infrared Space Observatory demonstrated that the overall form of the Andromeda galaxy may be transitioning into a ring galaxy. The gas and dust within Andromeda is generally formed into several overlapping rings, with a particularly prominent ring formed at a radius of 32,000 light-years from the core.[29] This ring is hidden from visible light images of the galaxy because it is composed primarily of cold dust.
Close examination of the inner region of Andromeda showed a smaller dust ring that is believed to have been caused by the interaction with M32 more than 200 million years ago. Simulations show that the smaller galaxy passed through the disk of Andromeda along the later's polar axis. This collision stripped more than half the mass from the smaller M32 and created the ring structures in Andromeda.[30]
Studies of the extended halo of M31 show that it is roughly comparable to that of the Milky Way, with stars in the halo being generally "metal"-poor, and increasingly so with greater distance.[31] This evidence indicates that the two galaxies have followed similar evolutionary paths. They are likely to have accreted and assimilated about 1–200 low-mass galaxies during the past 12 thousand million years[32] The stars in the extended halos of M31 and the Milky Way may extend nearly 1⁄3 the distance separating the two galaxies.
[编辑] Features
In 1991 the Planetary Camera then onboard the Hubble Space Telescope imaged Andromeda's core. To everyone's surprise its nucleus showed a double structure, with two nuclear hot-spots located within a few light-years of each other. Subsequent ground-based observations have led to speculation that indeed two nuclei exist and are moving with respect to each other, that one nucleus is slowly tidally disrupting the other, and that one nucleus may be the remnant of a smaller galaxy "eaten" by M31.[33] The nuclei of many galaxies, including M31, are known to be quite violent places, and the existence of supermassive black holes is frequently postulated to explain them.
Multiple X-ray sources have been detected in the Andromeda Galaxy, using observations from the ESA's XMM-Newton orbiting observatory. Dr. Robin Barnard et al hypothesized that these are candidate black holes or neutron stars, which are heating incoming gas to millions of kelvins and emitting X-rays. The spectrum of the neutron stars is the same as the hypothesized black holes, but can be distinguished by their masses.[34]
There are approximately 460 globular clusters associated with the Andromeda galaxy[35] The most massive of these clusters, identified as Mayall II, nicknamed Globular One, has a greater luminosity than any known globular cluster in the local group of galaxies.[36] It contains several million stars, and is about twice as luminous as Omega Centauri, the brightest known globular cluster in the Milky Way. Globular One (or G1) has several stellar populations and a structure too massive for an ordinary globular. As a result, some consider G1 to be the remnant core of a dwarf galaxy that was consumed by M31 in the distant past.[37] The globular with the greatest apparent brightness is G76 which is located in the south-west arm's eastern half.[9]
In 2005, astronomers discovered a completely new type of star cluster in M31. The new-found clusters contain hundreds of thousands of stars, a similar number of stars that can be found in globular clusters. What distinguishes them from the globular clusters is that they are much larger – several hundred light-years across – and hundreds of times less dense. The distances between the stars are, therefore, much greater within the newly discovered extended clusters.[38]
[编辑] 衛星星系
- 主条目:Andromeda's satellite galaxies
Like our Milky Way, Andromeda has satellite galaxies, consisting of 14 known dwarf galaxies. The best known and most readily observed satellite galaxies are M32 and M110.
Based on current evidence, it appears that M32 underwent a close encounter with M31 in the past. M32 may once have been a larger galaxy that had its stellar disk removed by M31, and underwent a sharp increase of star formation in the core region, which lasted until the relative recent past.[39]
M110 also appears to be interacting with M31, and astronomers have found a stream of metal-rich stars in the halo of M31 that appears to have been stripped from these satellite galaxies.[40] M110 does contain a dusty lane, which is a hint for recent or ongoing star formation. This is unusual in elliptical galaxies, which are usually fairly low in dust and gas.
In 2006 it was discovered that nine of these galaxies lie along a plane that intersects the core of the Andromeda Galaxy, rather than being randomly generated. This may indicate a common origin for the satellites.[41]
Name | Type | Distance from Sun (Mly) |
Magnitude | Discovered by | Year discovered |
---|---|---|---|---|---|
M32 | cE2 | 2.65 ± 0.10 | +9.0 | Guillaume Le Gentil | 1749 |
M110 | E5 pec | 2.9 | +8.9 | Charles Messier | 1773 |
NGC 185 | dSph/dE3 | 2.08 ± 0.15 | +10.1 | William Herschel | 1787 |
NGC 147 | dSph/dE5 | 2.67 ± 0.18 | +10.5 | John Herschel | 1829 |
[编辑] Andromeda Galaxy in fiction
- 主条目:Galaxies in fiction
The Andromeda galaxy has had a role in a number of science fiction works. It has been used as a source of alien life forms that are in the process of invading the Milky Way galaxy, or as a setting for alien worlds and territories.
仙女座星系在科幻小說中一直扮演重要的腳色,長期以來一直被認為是侵略本銀河系的外星生命來源,也常被認為是外星世界暨領域的場景,例如著名的科幻電影 星際大戰就一直暗示發生在仙女座星系。[來源請求]
[编辑] 參閱
[编辑] 註記和參考資料
- ^ 1.0 1.1 1.2 1.3 1.4 1.5 1.6 NASA/IPAC Extragalactic Database - Results for Messier 31 - 於2006-11-01zh-tw:造;zh-cn:采訪。
- ^ 2.0 2.1 2.2 I. Ribas, C. Jordi, F. Vilardell, E.L. Fitzpatrick, R.W. Hilditch, F. Edward (2005). "First Determination of the Distance and Fundamental Properties of an Eclipsing Binary in the Andromeda Galaxy". Astrophysical Journal 635: L37-L40.
- ^ 3.0 3.1 Karachentsev, I. D.; Kashibadze, O. G. (2006). "Masses of the local group and of the M81 group estimated from distortions in the local velocity field". Astrophysics 49 (1): 3-18.
- ↑ distance × sin( diameter_angle / 2 ) = 69.6 kly. radius
- ↑ 視星等 4.36 - 距離模組 of 24.4 = -20.0
- ↑
- ↑ Dark matter comes out of the cold,BBC News,February 5 2006。於2006-05-24檢閱。
- ↑ Young·Kelly (2006-06-06) - Andromeda galaxy hosts a trillion stars (English) NewScientistSpace - 於2006-06-08zh-tw:造;zh-cn:采訪。
- ^ 9.0 9.1 9.2 9.3 Kepple,George Robert; Glen W. Sanner (1998). The Night Sky Observer's Guide, Volume 1, 18,Willmann-Bell, Inc.. ISBN 0-943396-58-1.
- ↑ W. Herschel (1785). "On the Construction of the Heavens". Philosophical Transactions of the Royal Society of London 75: 213-266.
- ↑ William Huggins (1864). "On the Spectra of Some of the Nebulae". Philosophical Transactions of the Royal Society of London 154: 437-444.
- ↑ Roberts,Isaac (1899). A Selection of Photographs of Stars, Star-clusters and Nebulae, Vol. II,London: The Universal Press.
- ↑ V.M. Slipher (1913). "The Radial Velocity of the Andromeda Nebula". Lowell Observatory Bulletin 1: 2.56-2.57.
- ↑ Heber D. Curtis (January 1988). "Novae in Spiral Nebulae and the Island Universe Theory". Publications of the Astronomical Society of the Pacific 100: 6.
- ↑ E. P. Hubble (1929). "A spiral nebula as a stellar system, Messier 31". Astrophysical JournalEngl 69: 103-158.
- ↑ W. Baade (1944). "The Resolution of Messier 32, NGC 205, and the Central Region of the Andromeda Nebula". Astrophysical Journal 100: 137.
- ↑ Malik·Tariq (2002-05-07) - Crash Course: Simulating the Fate of Our Milky Way (English) SPACE.com - 於2006-09-18zh-tw:造;zh-cn:采訪。
- ↑ Dr. John Dubinski, University of Toronto - A Collision Between The Milky Way And The Andromeda Galaxy - 於2006-05-24zh-tw:造;zh-cn:采訪。
- ↑ J00443799+4129236 is at celestial coordinates R.A. 00h 44m 37.99s, Dec. +41° 29′ 23.6″.
- ↑ N. W. Evans & M. I. Wilkinson (2000). "The mass of the Andromeda galaxy". Monthly Notices of the Royal Astronomical Society 316 issue 4: 929-942.
- ↑ Moore,Sir Patrick (2002). Oxford Astronomy Encyclopedia,New York: Oxford University Press. ISBN 0-19-521833-7.
- ↑ W. Liller, B. Mayer (July 1987). "The Rate of Nova Production in the Galaxy". Publications Astronomical Society of the Pacific 99: 606–609.
- ↑ R.L. Beaton, E. Athanassoula, S.R. Majewski, P. Guhathakurta, M.F. Skrutskie, R.J. Patterson, M. Bureau (2006). "Unveiling the Boxy Bulge and Bar of the Andromeda Spiral Galaxy". Astrophysical Journal Letters.
- ↑ S. C. Chapman, R. Ibata, G. F. Lewis, A. M. N. Ferguson, M. Irwin, A. McConnachie, N. Tanvir (2006). "A kinematically selected, metal-poor spheroid in the outskirts of M31". Astrophysical Journal. Also see the press release, CalTech Media Relations (February 27, 2006). Andromeda's Stellar Halo Shows Galaxy's Origin to Be Similar to That of Milky Way. Press release. Retrieved on 2006-05-24.
- ↑ UC Santa Cruz (January 9, 2001). Astronomers Find Evidence of an Extreme Warp in the Stellar Disk of the Andromeda Galaxy. Press release. Retrieved on 2006-05-24.
- ↑ V. C. Rubin, W. K. J. Ford (1970). "Rotation of the Andromeda Nebula from a Spectroscopic Survey of Emission". Astrophysical Journal 159: 379.
- ↑ H. Arp (1964). "Andromeda Nebula from a Spectroscopic Survey of Emission". Astrophysical Journal 139: 1045.
- ↑ R. Braun (1991). "The distribution and kinematics of neutral gas, HI region in M31". Astrophysical Journal 372, part 1: 54–66.
- ↑ Esa Science News (October 14, 1998). ISO unveils the hidden rings of Andromeda. Press release. Retrieved on 2006-05-24.
- ↑ Busted! Astronomers Nab Culprit in Galactic Hit-and-Run,Harvard-Smithsonian Center for Astrophysics,October 18, 2006。於2006-10-18檢閱。
- ↑ J. S. Kalirai, K. M. Gilbert, P. Guhathakurta, S. R. Majewski, J. C. Ostheimer, R. M. Rich, M. C. Cooper, D. B. Reitzel, R. J. Patterson (2006). "The Metal-Poor Halo of the Andromeda Spiral Galaxy (M31)". Astrophysical Journal.
- ↑ J.S. Bullock and K.V. Johnston (2005). "Tracing Galaxy Formation with Stellar Halos I: Methods". Astrophysical Journal 635, issue 2: 931–949.
- ↑ Hubble news desk STScI-1993-18 (July 20, 1993). Hubble Space Telescope Finds a Double Nucleus in the Andromeda Galaxy. Press release. Retrieved on 2006-05-26.
- ↑ R., Barnard; U. Kolb; J.P. Osborne (August 2005). "Timing the bright X-ray population of the core of M31 with XMM-Newton". A&A.
- ↑ P. Barmby, J.P. Huchra (2001). "M31 Globular Clusters in the Hubble Space Telescope Archive. I. Cluster Detection and Completeness". Astrophysical Journal 122: 2458-2468.
- ↑ Hubble news desk STSci-1996-11 (April 24, 1996). Hubble Spies Globular Cluster in Neighboring Galaxy. Press release. Retrieved on 2006-05-26.
- ↑ G. Meylan, A. Sarajedini, P. Jablonka, S.G. Djorgovski, T. Bridges, R.M. Rich (2001). "G1 in M31 - Giant Globular Cluster or Core of a Dwarf Elliptical Galaxy?". Astrophysical Journal 122: 830-841.
- ↑ A.P. Huxor, N.R. Tanvir, M.J. Irwin, R. Ibata (2005). "A new population of extended, luminous, star clusters in the halo of M31". Monthly Notices of the Royal Astronomical Society 360: 993-1006.
- ↑ K. Bekki, W.J. Couch, M.J. Drinkwater, M.D. Gregg (2001). "A New Formation Model for M32: A Threshed Early-type Spiral?". Astrophysical Journal 557, issue 1: L39-L42.
- ↑ R. Ibata, M. Irwin, G. Lewis, A.M. Ferguson, N. Tanvir (July 5, 2001). "A giant stream of metal-rich stars in the halo of the galaxy M31". Nature 412(6842): 49-52.
- ↑ A. Koch and E.K. Grebel. "The Anisotropic Distribution of M 31 Satellite Galaxies: A Polar Great Plane of Early-Type Companions". Astronomical Journal 131, issue 3: 1405-1415.
[编辑] 外部鏈結
- Simbad data on M31
- Messier 31, SEDS Messier pages
- Astronomy Picture of the Day: 18 Jul 2004 - 17 Oct 1998 - 22 Dec 2005
- Globular Clusters in M31
- First direct distance to Andromeda − Astronomy.com article
- Andromeda galaxy on SolStation site.
- Andromeda Galaxy at The Encyclopedia of Astrobiology, Astronomy, & Spaceflight
- NightSkyInfo.com - M31, the Andromeda Galaxy
- Ker Than, Strange Setup: Andromeda's Satellite Galaxies All Lined Up 23 Jan 2006
- Memory Alpha中的相關條目仙女座星系,一個《zh-cn:星际旅行;zh-tw:星艦奇航記;zh-hk:星空奇遇記》的Wiki網站: How the Andromeda Galaxy fits into the Star Trek universe
[编辑] 相關條目