超导材料
维基百科,自由的百科全书
超導材料,又稱為超導體(superconductor)。當某導體在一溫度下,可使電阻為零而稱之。零电阻和抗磁性是超导体的两个重要特性。使超导体电阻为零的温度,叫超导临界温度。
目录 |
[编辑] 演進史
1911年,荷兰科学家昂内斯(Onnes)用液氦冷却汞,当温度下降到絕對溫標4.2K时水银的电阻完全消失,这种现象称为超导电性,此温度称为临界温度。根据临界温度的不同,超导材料可以被分为:高温超导材料和低温超导材料。但這裡所說的「高溫」,其實仍然是遠低於冰點攝氏0℃的,對一般人來說算是極低的溫度。1933年,迈斯纳和奥克森菲尔德两位科学家发现,如果把超导体放在磁场中冷却,则在材料电阻消失的同时,磁感应线将从超导体中排出,不能通过超导体,这种现象称为抗磁性。
经过科学家们的努力,超导材料的磁电障碍已被跨越,下一个难关是突破温度障碍,即寻求高温超导材料。
1973年,发现超导合金――铌锗合金,其临界超导温度为23.2K,这一记录保持了近13年。
1986年,设在瑞士苏黎世的美国IBM公司的研究中心报道了一种氧化物(镧钡铜氧化物)具有35K的高温超导性。此后,科学家们几乎每隔几天,就有新的研究成果出现。
1986年,美国贝尔实验室研究的超导材料,其临界超导温度达到40K,液氢的“温度壁垒”(40K)被跨越。
1987年,中国科学家赵忠贤以及美国华裔科学家朱经武相继在钇-钡-铜-氧系材料上把临界超导温度提高到90K以上,液氮的“温度壁垒”(77K)也被突破了。1987年底,铊-钡-钙-铜-氧系材料又把临界超导温度的记录提高到125K。从1986-1987年的短短一年多的时间里,临界超导温度提高了近100K。
[编辑] 用途
超导磁体可用于制作交流超导发电机、磁流体发电机和超导输电线路等。
[编辑] 超導體與常規導體
常规导体做磁体时,要产生10万高斯以上的稳态强磁场,需要消耗3.5兆瓦的电能及大量的冷却用水,投资巨大;而超导材料在超导状态下具有零电阻和抗磁性,因此只需消耗极少的电能,就可以获得这么大的稳态强磁场。