辛普森悖论
维基百科,自由的百科全书
当人们尝试探究两种变量是否具有相关性的时候,比如新生录取率与性别,报酬与性别等,会分别对之进行分组研究。辛普森悖论是在这种研究中,在某些前提下有时会产生的一种现象。即在分组比较中都占优势的一方,会在总评中反而是失势的一方。该现象于20世纪初就有人讨论,但一直到1951年E.H.辛普森在他发表的论文中,该现象才算正式被描述解释。后来就以他的名字命名该悖论。
请看下面的例子
一所美国高校的两个学院,分别是法学院和商学院,新学期招生。人们怀疑这两个学院有性别歧视。现作如下统计:
法学院
性别 | 录取 | 拒收 | 总数 | 录取比例 |
---|---|---|---|---|
男生 | 8 | 45 | 53 | 15.1% |
女生 | 51 | 101 | 152 | 33.6% |
合计 | 59 | 146 | 205 |
商学院
性别 | 录取 | 拒收 | 总数 | 录取比例 |
---|---|---|---|---|
男生 | 201 | 50 | 251 | 80.1% |
女生 | 92 | 9 | 101 | 91.1% |
合计 | 293 | 59 | 352 |
根据上面两个表格来看,女生在两个学院都被优先录取。即女生的录取比率较高。现在将两学院的数据汇总:
性别 | 录取 | 拒收 | 总数 | 录取比例 |
---|---|---|---|---|
男生 | 209 | 95 | 304 | 68.8% |
女生 | 143 | 110 | 253 | 56.5% |
合计 | 352 | 205 | 557 |
在总评中,女生的录取比率反而比男生低。
借助一幅向量图可以更好的了解情况(右图)
这个例子说明,简单的将分组数据相加汇总,是不能反映真实情况的。
就上述例子说,导致辛普森悖论有两个前提。
1 两个分组的录取率相差很大,就是说法学院录取率很低,而商学院却很高。而同时两种性别的申请者分布比重相反。女性申请者的大部分分布在法学院,相反,男性申请者大部分分布于商学院。结果在数量上来说,拒收率高的法学院拒收了很多的女生,男生虽然有更高的拒收率,但被拒收的数量却相对不算多。而录取率很高的商学院录取了很多男生。使得最后汇总的时候,男生在数量上反而占优。
2 有潜在因素影响着录取情况。就是说,性别并非是录取率高低的唯一因素,甚至可能是毫无影响的。至于在学院中出现的比率差,可能是随机事件。又或者是其他因素作用,比如入学成绩,却刚好出现这种录取比例,使人牵强误认为这是由性别差异而造成的。
为了避免辛普森悖论的出现,就需要斟酌个分组的权重,并乘以一定的系数去消除以分组数据基数差异而造成的影响。同时必需了解清楚情况,是否存在潜在因素,综合考虑。
[编辑] 相關條目
[编辑] 参考文献
Skript zur Statistik in der Naturwissenschaften(Gerhard Osius, Universität Bremen)