適定性問題
维基百科,自由的百科全书
數學術語適定性問題來自於哈達瑪所給出的定義。他認為物理現象中的數學模型應該具備下述性質︰
- 存在著解
- 解是惟一的
- 解連續地取決於資料
適定性問題的原型範例包括對於拉普拉斯方程的狄利克雷問題,以及給定初始條件的熱導方程。在物理過程中解決的這些問題,也許被視為「自然」問題。相較之下,反向熱導方程,推演來自最終數據的溫度的稍早分佈就不是適定的,因為這個解對最終數據極為敏感。一個問題如果不是適定的,哈達瑪就將其視為不適定。逆問題通常是不適定的。
這些連續問題必須使其離散,以取得數值解。泛函分析問題通常是連續的,當以有限精度或存有錯誤的資料求解時,它可以承受這些數值的不穩定性。
即使一個問題是適定的,它也可能仍是病態的;即在初始資料中的一個微小錯誤,可以造成很大錯誤的答案。病態問題以大的條件數表示。
如果某一個問題是適定的,它就有機會在使用了穩定演算法的電腦上取得解。如果問題是不適定的,就需要為數值處理重新以公式表示。這通常包含了額外的假設,例如︰解的平滑性。這個過程稱為規範化。
[编辑] 參考
- Jacques Hadamard (1902): Sur les problèmes aux dérivées partielles et leur signification physique. Princeton University Bulletin, 49--52.
- McGraw-Hill Dictionary of Scientific and Technical Terms, 4th edition 1974, 1989. Sybil B. Parker, editor in chief. McGraw-Hill book company, New York. ISBN 0-07-045270-9