New Immissions/Updates:
boundless - educate - edutalab - empatico - es-ebooks - es16 - fr16 - fsfiles - hesperian - solidaria - wikipediaforschools
- wikipediaforschoolses - wikipediaforschoolsfr - wikipediaforschoolspt - worldmap -

See also: Liber Liber - Libro Parlato - Liber Musica  - Manuzio -  Liber Liber ISO Files - Alphabetical Order - Multivolume ZIP Complete Archive - PDF Files - OGG Music Files -

PROJECT GUTENBERG HTML: Volume I - Volume II - Volume III - Volume IV - Volume V - Volume VI - Volume VII - Volume VIII - Volume IX

Ascolta ""Volevo solo fare un audiolibro"" su Spreaker.
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
QR分解 - Wikipedia

QR分解

维基百科,自由的百科全书

QR分解法是三種将矩阵分解的方式之一。這種方式,把矩阵分解成一个正交矩阵与一个上三角矩阵的积。

目录

[编辑] QR分解的求法

QR分解的实际计算有很多方法,例如en:Givens rotationHouseholder变换,以及Gram-Schmidt正交化等等。每一种方法都有其优点和不足。

[编辑] Gram-Schmidt正交化

参见Gram-Schmidt正交化

Recall the Gram-Schmidt method, with the vectors to be considered in the process as columns of the matrix A=(\mathbf{a}_1| \cdots|\mathbf{a}_n). Then

\mathbf{u}_1 = \mathbf{a}_1, \qquad\mathbf{e}_1 = {\mathbf{u}_1 \over \|\mathbf{u}_1\|}
\mathbf{u}_2 = \mathbf{a}_2-\mathrm{proj}_{\mathbf{e}_1}\,\mathbf{a}_2, \qquad\mathbf{e}_2 = {\mathbf{u}_2 \over \|\mathbf{u}_2\|}
\mathbf{u}_3 = \mathbf{a}_3-\mathrm{proj}_{\mathbf{e}_1}\,\mathbf{a}_3-\mathrm{proj}_{\mathbf{e}_2}\,\mathbf{a}_3, \qquad\mathbf{e}_3 = {\mathbf{u}_3 \over \|\mathbf{u}_3\|}
\vdots
\mathbf{u}_k = \mathbf{a}_k-\sum_{j=1}^{k-1}\mathrm{proj}_{\mathbf{e}_j}\,\mathbf{a}_k,\qquad\mathbf{e}_k = {\mathbf{u}_k\over\|\mathbf{u}_k\|}

Naturally then, we rearrange the equations so the ais are the subject, to get the following

\mathbf{a}_1 = \mathbf{e}_1\|\mathbf{u}_1\|
\mathbf{a}_2 = \mathrm{proj}_{\mathbf{e}_1}\,\mathbf{a}_2+\mathbf{e}_2\|\mathbf{u}_2\|
\mathbf{a}_3 = \mathrm{proj}_{\mathbf{e}_1}\,\mathbf{a}_3+\mathrm{proj}_{\mathbf{e}_2}\,\mathbf{a}_3+\mathbf{e}_3\|\mathbf{u}_3\|
\vdots
\mathbf{a}_k = \sum_{j=1}^{k-1}\mathrm{proj}_{\mathbf{e}_j}\,\mathbf{a}_k+\mathbf{e}_k\|\mathbf{u}_k\|

Each of these projections of the vectors \mathbf{a}_i onto one of these ej are merely the inner product of the two, since the vectors are normed.

Now these equations can be written in matrix form, viz.,

\left(\mathbf{e}_1\left|\ldots\right|\mathbf{e}_n\right) \begin{pmatrix}  \|\mathbf{u}_1\| & \langle\mathbf{e}_1,\mathbf{a}_2\rangle &  \langle\mathbf{e}_1,\mathbf{a}_3\rangle  & \ldots \\ 0                & \|\mathbf{u}_2\|                        &  \langle\mathbf{e}_2,\mathbf{a}_3\rangle  & \ldots \\ 0                & 0                                       & \|\mathbf{u}_3\|                          & \ldots \\ \vdots           & \vdots                                  & \vdots                                    & \ddots \end{pmatrix}

But the product of each row and column of the matrices above give us a respective column of A that we started with, and together, they give us the matrix A, so we have factorized A into an orthogonal matrix Q (the matrix of eks), via Gram Schmidt, and the obvious upper triangular matrix as a remainder R.

Alternatively, \begin{matrix} R \end{matrix} can be calculated as follows:

Recall that \begin{matrix}Q\end{matrix} = \left(\mathbf{e}_1\left|\ldots\right|\mathbf{e}_n\right). Then, we have

\begin{matrix} R = Q^{T}A = \end{matrix}  \begin{pmatrix}  \langle\mathbf{e}_1,\mathbf{a}_1\rangle & \langle\mathbf{e}_1,\mathbf{a}_2\rangle &  \langle\mathbf{e}_1,\mathbf{a}_3\rangle  & \ldots  \\ 0                & \langle\mathbf{e}_2,\mathbf{a}_2\rangle                        &  \langle\mathbf{e}_2,\mathbf{a}_3\rangle  & \ldots  \\ 0                & 0                                       & \langle\mathbf{e}_3,\mathbf{a}_3\rangle                          & \ldots  \\ \vdots           & \vdots                                  & \vdots                                    & \ddots \end{pmatrix}.

Note that \langle\mathbf{e}_j,\mathbf{a}_j\rangle = \|\mathbf{u}_j\|, \langle\mathbf{e}_j,\mathbf{a}_k\rangle = 0 \mathrm{~~for~~} j > k, and QQT = I, so QT = Q − 1.

[编辑] Householder变换

[编辑] MatLab

MATLAB以qr函数来执行QR分解法,其语法为

[Q,R]=qr(A)
其中Q代表正规正交矩阵,
而R代表上三角形矩阵。

此外,原矩阵A不必为正方矩阵; 如果矩阵A大小为m*n,则矩阵Q大小为m*m,矩阵R大小为m*n。

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu