New Immissions/Updates:
boundless - educate - edutalab - empatico - es-ebooks - es16 - fr16 - fsfiles - hesperian - solidaria - wikipediaforschools
- wikipediaforschoolses - wikipediaforschoolsfr - wikipediaforschoolspt - worldmap -

See also: Liber Liber - Libro Parlato - Liber Musica  - Manuzio -  Liber Liber ISO Files - Alphabetical Order - Multivolume ZIP Complete Archive - PDF Files - OGG Music Files -

PROJECT GUTENBERG HTML: Volume I - Volume II - Volume III - Volume IV - Volume V - Volume VI - Volume VII - Volume VIII - Volume IX

Ascolta ""Volevo solo fare un audiolibro"" su Spreaker.
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Gram-Schmidt正交化 - Wikipedia

Gram-Schmidt正交化

维基百科,自由的百科全书

线性代数理论指出,内积空间上的一组向量能够张成一个子空间Gram-Schmidt正交化提供了一种方法,能够通过这组向量求出这一子空间上的一组正交基,并可进一步求出对应的标准正交基。

这种正交化方法以Jørgen Pedersen GramErhard Schmidt命名,然而比他们更早的拉普拉斯(Laplace)和柯西(Cauchy)已经发现了这一方法。在李群分解中,这种方法被一般化为岩泽分解(Iwasawa decomposition)。

在数值计算中,Gram-Schmidt正交化是不稳定的,计算中累积的舍入误差会使最终结果的正交性变得很差。因此,通常使用Householder TransformationGivens rotations进行正交化。

目录

[编辑] 记法

  • \boldsymbol{V}^n维数n 的内积空间
  • \boldsymbol{v} \in \boldsymbol{V}^n\boldsymbol{V}^n中的元素,可以是向量、函数,等等
  • \langle \boldsymbol{v}_1, \boldsymbol{v}_2 \rangle\boldsymbol{v}_1\boldsymbol{v}_2内积
  • \mathrm{span} \{ \boldsymbol{v}_1,\boldsymbol{v}_2,\ldots , \boldsymbol{v}_n \}\boldsymbol{v}_1\boldsymbol{v}_2……\boldsymbol{v}_n张成的子空间
  • \mathrm{proj}_{\boldsymbol{v}}\,\boldsymbol{u} = {\langle \boldsymbol{u}, \boldsymbol{v}\rangle\over\langle \boldsymbol{v}, \boldsymbol{v}\rangle}\boldsymbol{v}\boldsymbol{u}\boldsymbol{v}上的投影

[编辑] 基本思想

图1 v在V2上投影,构造V3上的正交基β
图1 vV2上投影,构造V3上的正交基β

Gram-Schmidt正交化的基本想法,是利用投影原理,在已有的正交基的基础上构造一个新的正交基。

\boldsymbol{v} \in \boldsymbol{V^n}VkVn上的k 维子空间,其标准正交基为\{ \eta_1,\ldots , \eta_k \},且v不在Vk上。由投影原理知,v与其在Vk上的投影\mathrm{proj}_{\boldsymbol{V^k}} \boldsymbol{v}之差

\boldsymbol{\beta}   = \boldsymbol{v} - \sum_{i=1}^{k}\mathrm{proj}_{\boldsymbol{v}}\,\boldsymbol{\eta}_i  = \boldsymbol{v} - \sum_{i=1}^{k}\langle \boldsymbol{v}, \boldsymbol{\eta}_i \rangle \boldsymbol{\eta}_i

是正交于子空间Vn的,亦即β正交于Vn的正交基ηi。因此只要将β单位化,即

\boldsymbol{\eta}_{k+1}  = \frac{\boldsymbol{\beta}}{\|\beta\|}  = \frac{\boldsymbol{\beta}}{\sqrt{\langle \beta,\beta \rangle }}

那么1,...,ηk+1}就是Vkv上扩展的子空间span{v,η1,...,ηk}的标准正交基。

根据上述分析,对于向量组{v1,...,vm}张成的空间Vn,只要从其中一个向量(不妨设为v1)所张成的一维子空间span{v1}开始(注意到{v1}就是span{v1}的正交基),重复上述扩展构造正交基的过程,就能够得到Vn的一组正交基。这就是Gram-Schmidt正交化。

[编辑] 算法

首先需要确定扩展正交基的顺序,不妨设为\{v_1, \ldots ,v_n\}。Gram-Schmidt正交化的过程如下:

\boldsymbol{\beta}_1 = \boldsymbol{v}_1, \boldsymbol{\eta}_1 = {\boldsymbol{\beta}_1 \over \|\boldsymbol{\beta}_1\|}
\boldsymbol{\beta}_2           = \boldsymbol{v}_2-\langle \boldsymbol{v}_2, \boldsymbol{\eta}_1 \rangle \boldsymbol{\eta}_1, \boldsymbol{\eta}_2 = {\boldsymbol{\beta}_2 \over \|\boldsymbol{\beta}_2\|}
\boldsymbol{\beta}_3              = \boldsymbol{v}_3 -               \langle \boldsymbol{v}_3, \boldsymbol{\eta}_1 \rangle \boldsymbol{\eta}_1 -               \langle \boldsymbol{v}_3, \boldsymbol{\eta}_2 \rangle \boldsymbol{\eta}_2 , \boldsymbol{\eta}_3 = {\boldsymbol{\beta}_3 \over \|\boldsymbol{\beta}_3\|}
\vdots \vdots
\boldsymbol{\beta}_n = \boldsymbol{v}_n-\sum_{i=1}^{n-1}\langle \boldsymbol{v}_n, \boldsymbol{\eta}_i \rangle \boldsymbol{\eta}_i, \boldsymbol{\eta}_n = {\boldsymbol{\beta}_n\over\|\boldsymbol{\beta}_n\|}

这样就得到\mathrm{span}\{ \boldsymbol{v}_1, \ldots , \boldsymbol{v}_n \}上的一组正交基\{ \boldsymbol{\beta}_1, \ldots , \boldsymbol{\beta}_n \},以及相应的标准正交基\{ \boldsymbol{\eta}_1, \ldots , \boldsymbol{\eta}_n \}


考察如下欧几里得空间Rn中向量的集合,欧氏空间上内积的定义为<a, b> = bTa

S = \lbrace\boldsymbol{v}_1=\begin{pmatrix} 3 \\ 1\end{pmatrix}, \boldsymbol{v}_2=\begin{pmatrix}2 \\2\end{pmatrix}\rbrace.

下面作Gram-Schmidt正交化,以得到一组正交向量:

\boldsymbol{\beta}_1=\boldsymbol{v}_1=\begin{pmatrix}3\\1\end{pmatrix}
\boldsymbol{\beta}_2=\boldsymbol{v}_2-\mathrm{proj}_{\boldsymbol{\beta}_1}\,\boldsymbol{v}_2=\begin{pmatrix}2\\2\end{pmatrix\mathrm{proj}_{\begin{pmatrix}3\\1\end{pmatrix}}\,{\begin{pmatrix}2\\2\end{pmatrix}}=\begin{pmatrix}-2/5\\6/5\end{pmatrix}}-

下面验证向量β1β2的正交性:

\langle\boldsymbol{\beta}_1,\boldsymbol{\beta}_2\rangle = \left\langle \begin{pmatrix}3\\1\end{pmatrix}, \begin{pmatrix2/5\\6/5\end{pmatrix} \right\rangle = -\frac65 + \frac65 = 0.}-

将这些向量单位化:

\boldsymbol{\eta}_1 = {1 \over \sqrt {10}}\begin{pmatrix}3\\1\end{pmatrix}
\boldsymbol{\eta}_2 = {1 \over \sqrt {8 \over 5}}\begin{pmatrix2/5\\6/5\end{pmatrix}}-

于是{η1,η2}就是span{v1, v2} 的一组标准正交基。

[编辑] 不同的形式

随着内积空间上内积的定义以及构成内积空间的元素的不同,Gram-Schmidt正交化也表现出不同的形式。

例如,在实向量空间上,内积定义为:

\langle \boldsymbol{a}, \boldsymbol{b} \rangle = \boldsymbol{b}^T \boldsymbol{a}

在复向量空间上,内积定义为:

\langle \boldsymbol{a}, \boldsymbol{b} \rangle = \boldsymbol{b}^H \boldsymbol{a}

函数之间的内积则定义为:

\langle f(x), g(x) \rangle = \int_{-\infty}^{\infty}f(x)g^*(x) dx

与之对应,相应的Gram-Schmidt正交化就具有不同的形式。

[编辑] 参见

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu