SHA 家族
维基百科,自由的百科全书
安全雜湊演算法能計算出一個數位訊息所對應到的,長度固定的字串(又稱訊息摘要)。且若輸入的訊息不同,它們對應到不同字串的機率很高;而 SHA 是FIPS所認證的五種安全雜湊演算法。這些演算法之所以稱作「安全」是基於以下兩點(根據官方標準的描述):「1)由訊息摘要反推原輸入訊息,從計算理論上來說是很困難的。2)想要找到兩組不同的訊息對應到相同的訊息摘要,從計算理論上來說也是很困難的。任何對輸入訊息的變動,都有很高的機率導致其產生的訊息摘要迥異。」
SHA 家族的五個演算法,分別是SHA-1, SHA-224, SHA-256, SHA-384, 和 SHA-512,由美國國家安全局 (NSA) 所設計,並由美國國家標準與技術研究院(NIST) 發佈;是美國的政府標準。後四者有時並稱為SHA-2。SHA-1 在許多安全協定中廣為使用,包括 TLS 和 SSL、 PGP、SSH、S/MIME 和 IPsec,曾被視為是 MD5(更早之前被廣為使用的雜湊函數)的後繼者。但 SHA-1 的安全性如今被密碼學家嚴重質疑;雖然至今尚未出現對 SHA-2 有效的攻擊,它的演算法跟 SHA-1 基本上仍然相似;因此有些人開始發展其他替代的雜湊演算法。緣於最近對 SHA-1 的種種攻擊發表,「美國國家標準與技術研究院(NIST)開始設法經由公開競爭管道(類似高級加密標準AES的發展經過),發展一個或多個新的雜湊演算法。」
目录 |
[编辑] SHA-0 和 SHA-1
最初載明的演算法於 1993年發佈,稱做安全雜湊標準 (Secure Hash Standard),FIPS PUB 180。這個版本現在常被稱為 SHA-0。它在發佈之後很快就被 NSA 撤回,並且由 1995年發佈的修訂版本 FIPS PUB 180-1 (通常稱為 SHA-1) 取代。SHA-1 和 SHA-0 的演算法只在壓縮函數的訊息轉換部份差了一個位元的循環位移。根據 NSA 的說法,它修正了一個在原始演算法中會降低密碼安全性的錯誤。然而 NSA 並沒有提供任何進一步的解釋或證明該錯誤已被修正。而後 SHA-0 和 SHA-1 的弱點相繼被攻破,SHA-1 似乎是顯得比 SHA-0 有抵抗性,這多少證實了 NSA 當初修正演算法以增進安全性的聲明。
SHA-0 和 SHA-1 可將一個最大 264 位元的訊息,轉換成一串 160 位元的訊息摘要;其設計原理相似於 MIT 教授 Ronald L. Rivest 所設計的密碼學雜湊演算法 MD4 和 MD5。
[编辑] SHA-0 的破密
在 CRYPTO 98 上,兩位法國研究者提出一種對 SHA-0 的攻擊方式 (Chabaud and Joux, 1998): 在 261的計算複雜度之內,就可以發現一次碰撞(即兩個不同的訊息對應到相同的訊息摘要);這個數字小於 280 ,也就是說,其安全性不到一個理想的雜湊函數抵抗攻擊所應具備的計算複雜度。
2004年時,Biham 和 Chen 也發現了 SHA-0 的近似碰撞 — 兩個訊息可以雜湊出幾乎相同的數值;其中 162 位元中有 142 位元相同。他們也發現了 SHA-0 的完整碰撞(相對於近似碰撞),將本來需要 80 次方的複雜度降低到 62 次方。
2004年8月12日,Joux, Carribault, Lemuet 和 Jalby 宣佈找到 SHA-0 演算法的完整碰撞的方法,這是歸納 Chabaud 和 Joux 的攻擊所完成的結果。發現一個完整碰撞只需要 251的計算複雜度。他們使用的是一台有 256 顆 Itanium2 處理器的超級電腦,約耗 80,000 CPU 工時 [1]。
2004年8月17日,在 CRYPTO 2004 的 Rump 會議上,王小雲, 馮登國 (Feng), 來學嘉 (Lai), 和于紅波 (Yu) 宣佈了攻擊 MD5、SHA-0 和其他雜湊函數的初步結果。他們攻擊 SHA-0 的計算複雜度是 240,這意謂的他們的攻擊成果比 Joux 還有其他人所做的更好。請參見 MD5 安全性。2005 年二月,王小雲和殷益群、于紅波再度發表了對 SHA-0 破密的演算法,可在 239 的計算複雜度內就找到碰撞。
[编辑] SHA-1 的破密
鑒於 SHA-0 的破密成果,專家們建議那些計畫利用 SHA-1 實作密碼系統的人們也應重新考慮。2004 年 CRYPTO 會議結果公佈之後,NIST 即宣布他們將逐漸減少使用 SHA-1,改以 SHA-2 取而代之。
2005年,Rijmen 和 Oswald 發表了對 SHA-1 較弱版本(53次的加密迴圈而非80次)的攻擊:在 280 的計算複雜度之內找到碰撞。
2005年二月,王小雲、殷益群及于紅波發表了對完整版 SHA-1 的攻擊,只需少於 269 的計算複雜度,就能找到一組碰撞。(利用暴力搜尋法找到碰撞需要 280 的計算複雜度。)
這篇論文的作者們寫道﹔「我們的破密分析是以對付 SHA-0 的差分攻擊、近似碰撞、多區塊碰撞技術、以及從 MD5 演算法中尋找碰撞的訊息更改技術為基礎。沒有這些強力的分析工具,SHA-1 就無法破解。」此外,作者還展示了一次對 58 次加密迴圈 SHA-1 的破密,在 233 個單位操作內就找到一組碰撞。完整攻擊方法的論文發表在 2005 年八月的 CRYPTO 會議中。
殷益群在一次面談中如此陳述:「大致上來說,我們找到了兩個弱點:其一是前置處理不夠複雜;其二是前 20 個迴圈中的某些數學運算會造成不可預期的安全性問題。」
2005 年八月 17 的 CRYPTO 會議尾聲中王小雲、姚期智、姚儲楓再度發表更有效率的 SHA-1 攻擊法,能在 263 個計算複雜度內找到碰撞。
在密碼學的學術理論中,任何攻擊方式,其計算複雜度若少於暴力搜尋法所需要的計算複雜度,就能被視為針對該密碼系統的一種破密法;這並不表示該破密法已經可以進入實際應用的階段。
就應用層面的考量而言,一種新的破密法出現,暗示著將來可能會出現更有效率、足以實用的改良版本。雖然這些實用的破密法版本根本還沒誕生,但確有必要發展更強的雜湊演算法來取代舊的演算法。在「碰撞」攻擊法之外,另有一種反譯攻擊法,就是由雜湊出的字串反推原本的訊息;反譯攻擊的嚴重性更在碰撞攻擊之上。 在許多會應用到密碼雜湊的情境(如用戶密碼的存放、文件的數位簽章等)中,碰撞攻擊的影響並不是很大。舉例來說,一個攻擊者可能不會只想要偽造一份一模一樣的文件,而會想改造原來的文件,再附上合法的簽章,來愚弄持有私密金鑰的驗證者。另一方面,如果可以從密文中反推未加密前的使用者密碼,攻擊者就能利用得到的密碼登入其他使用者的帳戶,而這種事在密碼系統中是不能被允許的。但若存在反譯攻擊,只要能得到指定使用者密碼雜湊過後的字串(通常存在影檔中,而且可能不會透露原密碼資訊),就有可能得到該使用者的密碼。
2006 年的 CRYPTO 會議上,Christian Rechberger 和 Christophe De Cannière 宣布他們能在容許攻擊者決定部分原訊息的條件之下,找到 SHA-1 的一個碰撞。
[编辑] SHA-2
NIST 發佈了三個額外的 SHA 變體,這三個函數都將訊息對應到更長的訊息摘要。以它們的摘要長度 (以位元計算) 加在原名後面來命名:SHA-256,SHA-384 和 SHA-512。它們發佈於 2001年的 FIPS PUB 180-2 草稿中,隨即通過審查和評論。包含 SHA-1 的 FIPS PUB 180-2,於 2002年以官方標準發佈。2004年2月,發佈了一次 FIPS PUB 180-2 的變更通知,加入了一個額外的變種 "SHA-224",這是為了符合雙金鑰 3DES 所需的金鑰長度而定義。
SHA-256 和 SHA-512 是很新的雜湊函數,前者以定義一個word為32位元,後者則定義一個word為64位元。它們分別使用了不同的偏移量,或用不同的常數,然而,實際上二者結構是相同的,只在迴圈執行的次數上有所差異。 SHA-224 以及 SHA-384 則是前述二種雜湊函數的截短版,利用不同的初始值做計算。
這些新的雜湊函數並沒有接受像 SHA-1 一樣的公眾密碼社群做詳細的檢驗,所以它們的密碼安全性還不被大家廣泛的信任。Gilbert 和 Handschuh (2003) 曾對這些新變種作過一些研究,聲稱他們沒有弱點。
[编辑] SHA 所定義的長度
下表中的中繼雜湊值(internal state)表示對每個資料區塊壓縮雜湊過後的中繼值(internal hash sum)。詳情請參見Merkle-Damgård construction。
演算法 | 輸出雜湊值長度 (bits) | 中繼雜湊值長度 (bits) | 資料區塊長度 (bits) | 最大輸入訊息長度 (bits) | 一個Word長度 (bits) | 迴圈次數 | 使用到的運算子 | 碰撞攻擊 |
---|---|---|---|---|---|---|---|---|
SHA-0 | 160 | 160 | 512 | 264 − 1 | 32 | 80 | +,and,or,xor,rotl | 是 |
SHA-1 | 160 | 160 | 512 | 264 − 1 | 32 | 80 | +,and,or,xor,rotl | 存在263 的攻擊 |
SHA-256/224 | 256/224 | 256 | 512 | 264 − 1 | 32 | 64 | +,and,or,xor,shr,rotr | 尚未出現 |
SHA-512/384 | 512/384 | 512 | 1024 | 2128 − 1 | 64 | 80 | +,and,or,xor,shr,rotr | 尚未出現 |
[编辑] SHAd
SHAd 函數是一個簡單的相同 SHA 函數的重述:
SHAd-256(m)=SHA-256(SHA-256(m))。它會克服有關延伸長度攻擊的問題。
[编辑] 應用
SHA-1, SHA-224, SHA-256, SHA-384 和 SHA-512 都被需要安全雜湊演算法的美國聯邦政府所應用,他們也使用其他的密碼演算法和協定來保護敏感的未保密資料。FIPS PUB 180-1 也鼓勵私人或商業組織使用 SHA-1 加密。Fritz-chip 將很可能使用 SHA-1 雜湊函數來實現個人電腦上的數位版權管理。
首先推動安全雜湊演算法出版的是已合併的數位簽章標準。
SHA 雜湊函數已被做為 SHACAL 分組密碼演算法的基礎。
[编辑] SHA-1 演算法
以下是 SHA-1 演算法的虛擬碼:
Note: All variables are unsigned 32 bits and wrap modulo 232 when calculating Initialize variables: h0 := 0x67452301 h1 := 0xEFCDAB89 h2 := 0x98BADCFE h3 := 0x10325476 h4 := 0xC3D2E1F0 Pre-processing: append the bit '1' to the message append k bits '0', where k is the minimum number >= 0 such that the resulting message length (in bits) is congruent to 448 (mod 512) append length of message (before pre-processing), in bits, as 64-bit big-endian integer Process the message in successive 512-bit chunks: break message into 512-bit chunks for each chunk break chunk into sixteen 32-bit big-endian words w[i], 0 ≤ i ≤ 15 Extend the sixteen 32-bit words into eighty 32-bit words: for i from 16 to 79 w[i] := (w[i-3] xor w[i-8] xor w[i-14] xor w[i-16]) leftrotate 1 Initialize hash value for this chunk: a := h0 b := h1 c := h2 d := h3 e := h4 Main loop: for i from 0 to 79 if 0 ≤ i ≤ 19 then f := (b and c) or ((not b) and d) k := 0x5A827999 else if 20 ≤ i ≤ 39 f := b xor c xor d k := 0x6ED9EBA1 else if 40 ≤ i ≤ 59 f := (b and c) or (b and d) or (c and d) k := 0x8F1BBCDC else if 60 ≤ i ≤ 79 f := b xor c xor d k := 0xCA62C1D6 temp := (a leftrotate 5) + f + e + k + w[i] e := d d := c c := b leftrotate 30 b := a a := temp Add this chunk's hash to result so far: h0 := h0 + a h1 := h1 + b h2 := h2 + c h3 := h3 + d h4 := h4 + e Produce the final hash value (big-endian): digest = hash = h0 append h1 append h2 append h3 append h4
上述關於 f
運算式列於 FIPS PUB 180-1 中 , 以下替代運算式也許也能在主要迴圈裡計算 f
:
(0 ≤ i ≤ 19): f := d xor (b and (c xor d)) (alternative) (40 ≤ i ≤ 59): f := (b and c) or (d and (b or c)) (alternative 1) (40 ≤ i ≤ 59): f := (b and c) or (d and (b xor c)) (alternative 2) (40 ≤ i ≤ 59): f := (b and c) + (d and (b xor c)) (alternative 3)
[编辑] SHA-2 演算法
以下是SHA-256 演算法的虛擬碼。注意,64個word w[16..63]
中的位元比起 SHA-1 演算法,混合的程度大幅提升。
Note: All variables are unsigned 32 bits and wrap modulo 232 when calculating Initialize variables (first 32 bits of the fractional parts of the square roots of the first 8 primes 2..19): h0 := 0x6a09e667 h1 := 0xbb67ae85 h2 := 0x3c6ef372 h3 := 0xa54ff53a h4 := 0x510e527f h5 := 0x9b05688c h6 := 0x1f83d9ab h7 := 0x5be0cd19 Initialize table of round constants (first 32 bits of the fractional parts of the cube roots of the first 64 primes 2..311): k[0..63] := 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 Pre-processing: append the bit '1' to the message append k bits '0', where k is the minimum number >= 0 such that the resulting message length (in bits) is congruent to 448 (mod 512) append length of message (before pre-processing), in bits, as 64-bit big-endian integer Process the message in successive 512-bit chunks: break message into 512-bit chunks for each chunk break chunk into sixteen 32-bit big-endian words w[0..15] Extend the sixteen 32-bit words into sixty-four 32-bit words: for i from 16 to 63 s0 := (w[i-15] rightrotate 7) xor (w[i-15] rightrotate 18) xor (w[i-15] rightshift 3) s1 := (w[i-2] rightrotate 17) xor (w[i-2] rightrotate 19) xor (w[i-2] rightshift 10) w[i] := w[i-16] + s0 + w[i-7] + s1 Initialize hash value for this chunk: a := h0 b := h1 c := h2 d := h3 e := h4 f := h5 g := h6 h := h7 Main loop: for i from 0 to 63 s0 := (a rightrotate 2) xor (a rightrotate 13) xor (a rightrotate 22) maj := (a and b) xor (a and c) xor (b and c) t2 := s0 + maj s1 := (e rightrotate 6) xor (e rightrotate 11) xor (e rightrotate 25) ch := (e and f) xor ((not e) and g) t1 := h + s1 + ch + k[i] + w[i] h := g g := f f := e e := d + t1 d := c c := b b := a a := t1 + t2 Add this chunk's hash to result so far: h0 := h0 + a h1 := h1 + b h2 := h2 + c h3 := h3 + d h4 := h4 + e h5 := h5 + f h6 := h6 + g h7 := h7 + h Produce the final hash value (big-endian): digest = hash = h0 append h1 append h2 append h3 append h4 append h5 append h6 append h7
其中 ch
函數及 maj
函數可利用前述 SHA-1 的優化方式改寫。
SHA-224 和 SHA-256 基本上是相同的, 除了:
h0
到h7
的初始值不同,以及- SHA-224 輸出時截掉
h7
的函數值。
SHA-512 和 SHA-256 的結構相同,但:
- SHA-512 所有的數字都是64位元,
- SHA-512 執行80次加密迴圈而非64次,
- SHA-512 初始值和常數拉長成64位元,以及
- 二者位元的偏移量和循環位移量不同。
SHA-384 和 SHA-512 基本上是相同的,除了:
h0
到h7
的初始值不同,以及- SHA-384 輸出時截掉
h6
和h7
的函數值。
[编辑] 參見
[编辑] 參考資料
- Eli Biham, Rafi Chen, Near-Collisions of SHA-0, Cryptology ePrint Archive, Report 2004/146, 2004 (to appear CRYPTO 2004) [2]
- Florent Chabaud, Antoine Joux: Differential Collisions in SHA-0. CRYPTO 1998. pp56–71
- Henri Gilbert, Helena Handschuh: Security Analysis of SHA-256 and Sisters. Selected Areas in Cryptography 2003: pp175–193
[编辑] 外部鏈結
- FIPS PUB 180-2, 安全雜湊標準
- RFC 3174, 美國安全雜湊演算法 1 (SHA1)
- 這個 Javascript SHA-1 計算機會展示計算過程中的中繼值
- SHA-0 發現的雜湊碰撞