Eutectic point
From Wikipedia, the free encyclopedia
A eutectic or eutectic mixture is a mixture of two or more phases at a composition that has the lowest melting point, and where the phases simultaneously crystallise from molten solution at this temperature. The proper ratios of phases to obtain a eutectic is identified by the eutectic point on a binary phase diagram. The term comes from the Greek 'eutektos', meaning 'easily melted.'
The phase diagram at right displays a simple binary system composed of two components, A and B, which has a eutectic point. The phase diagram plots relative concentrations of A and B along the X-axis, and temperature along the Y-axis. The eutectic point is the point at which the liquid phase borders directly on the solid α + β phase (A solid phase composed of both A and B), representing the minimum melting temperature of any possible alloy of A and B. The temperature that corresponds to this point is known as the eutectic temperature.
Not all binary system alloys have a eutectic point: those that form a solid solution at all concentrations, such as the gold-silver system, have no eutectic. An alloy system that has a eutectic is often referred to as a eutectic system, or eutectic alloy.
Solid products of a eutectic transformation can often be identified by their lamellar structure, as opposed to the dendritic structures commonly seen in non-eutectic solidification. The same conditions that force the material to form lamellae can instead form an amorphous solid if pushed to an extreme.
Contents |
[edit] Metallic eutectics
The term is often used in metallurgy to describe the alloy of two or more component materials having the relative concentrations specified at the eutectic point. When a non-eutectic alloy freezes, one component of the alloy crystallizes at one temperature and the other at a different temperature. With a eutectic alloy, the mixture freezes as one at a single temperature. A eutectic alloy therefore has a sharp melting point, and a non-eutectic alloy exhibits a plastic melting range. The phase transformations that occur while freezing a given alloy can be understood using the phase diagram by drawing a vertical line from the liquid phase to the solid phase on a phase diagram; each point along the line describes the composition at a given temperature.
Some uses include:
- eutectic alloys for soldering, composed of tin (Sn), lead (Pb) and sometimes silver (Ag) or gold (Au).
- casting alloys, such as aluminum-silicon and cast iron (at the composition for an austenite-cementite eutectic in the iron-carbon system).
- brazing, where diffusion can remove alloying elements from the joint, so that eutectic melting is only possible early in the brazing process.
- temperature response, i.e. Wood's metal and Field's metal for fire sprinklers.
- non-toxic mercury replacements, such as galinstan.
- experimental metallic glasses, with extremely high strength and corrosion resistance.
- eutectic alloys of sodium and potassium (NaK) that are liquid at room temperature and used as coolant in experimental fast neutron nuclear reactors.
[edit] Other eutectic mixtures
Sodium chloride and water form a eutectic mixture. It has a eutectic point of −21.2 C[1] and 23.3%[2] salt by weight. The eutectic nature of salt and water is exploited when salt is spread on roads to aid snow removal, or mixed with ice to produce low temperatures (for example, in traditional ice cream making).
Lidocaine and prilocaine, both solids at room temperature, form a eutectic that is an oil with a 16°C melting point, used in EMLA (Eutectic Mixture of Local Anesthetic) preparations.
Minerals may form eutectic mixtures in igneous rocks,[3] giving rise to characteristic intergrowth textures such as that of granophyre.
Some inks are eutectic mixtures, allowing inkjet printers to operate at lower temperatures.[4]
[edit] Other critical points
[edit] Eutectoid
When the solution above the transformation point is solid, rather than liquid, an analogous eutectoid transformation can occur. For instance, in the iron-carbon system, the austenite phase can undergo a eutectoid transformation to produce ferrite and cementite (iron carbide), often in lamellar structures such as pearlite and bainite. This eutectoid point occurs at 727°C and about 0.8% carbon; alloys of nearly this composition are called high-carbon steel, while those which do not undergo eutectoid transformation are termed mild steel. The process analogous to glass formation in this system is the martensitic transformation.
[edit] Peritectic
Peritectic transformations are also similar to eutectic reactions. Here, a liquid and solid phase of fixed proportions react at a fixed temperature to yield a single solid phase. Since the solid product forms at the interface between the two reactants, it can form a diffusion barrier and generally causes such reactions to proceed much more slowly than eutectic or eutectoid transformations. Because of this, when a peritectic composition solidifies it does not show the lamellar structure that you find with eutectic freezing.
Such a transformation exists in the iron-carbon system, as seen near the upper-left corner of the figure. It resembles an inverted eutectic, with the δ phase combining with the liquid to produce pure austenite at 1495 °C and 0.17 mass percent carbon.
[edit] References
- ^ Muldrew, Ken; Locksley E. McGann (1997). Phase Diagrams. Cryobiology—A Short Course. University of Calgary. Retrieved on April 29, 2006.
- ^ Senese, Fred (1999). Does salt water expand as much as fresh water does when it freezes?. Solutions: Frequently asked questions. Department of Chemistry, Frostburg State University. Retrieved on April 29, 2006.
- ^ Fichter, Lynn S. (2000). Igneous Phase Diagrams. Igneous Rocks. James Madison University. Retrieved on April 29, 2006.
- ^ Davies, Nicholas A.; Beatrice M. Nicholas (1992). Eutectic compositions for hot melt jet inks. US Patent & Trademark Office, Patent Full Text and Image Database. United States Patent and Trademark Office. Retrieved on April 29, 2006.
- Sadoway, Donald (2004). Phase Equilibria and Phase Diagrams (pdf). 3.091 Introduction to Solid State Chemistry, Fall 2004. MIT Open Courseware. Retrieved on April 12, 2006.
[edit] Bibliography
- Mortimer, Robert G. (2000). Physical Chemistry. Academic Press. ISBN 0-12-508345-9.
- Reed-Hill, R.E.; Reza Abbaschian (1992). Physical Metallurgy Principles. Thomson-Engineering. ISBN 0-534-92173-6.
- Easterling, Edward (1992). Phase Transformations in Metals and Alloys. CRC. ISBN 0-7487-5741-4.
- Askeland, Donald R.; Pradeep P. Phule (2005). The Science and Engineering of Materials. Thomson-Engineering. ISBN 0-534-55396-6.