Carré parfait
Un article de Wikipédia, l'encyclopédie libre.
Cet article est une ébauche à compléter concernant l'algèbre, vous pouvez partager vos connaissances en le modifiant. |
En mathématiques, un entier n est un carré parfait (un carré s'il n'y a pas ambiguïté) s'il existe un entier k tel que n = k2 ; en d'autres termes, un carré parfait est le carré d'un entier. Par exemple, les entiers 0, 1, 4 ou encore 49 sont des carrés parfaits.
Dans notre système de numération habituel, le chiffre des unités d'un carré parfait ne peut être que 0, 1, 4, 5, 6 ou 9. En base douze, il serait obligatoirement 0, 1, 4 ou 9.
Les mathématiciens se sont souvent intéressés à certaines curiosités concernant les carrés parfaits. La plus connue, notamment pour sa référence au théorème de Pythagore, est l'égalité 32 + 42 = 52, qui débute l'étude des triplets pythagoriciens.
On notera que depuis 1995, on est sûr grâce au théorème de Fermat-Wiles, qu'il n'y a que les carrés qui peuvent faire une identité comme celle des triplets pythagoriciens. En effet, il n'y a aucune solution à a3 + b3 = c3 avec a,b et c entiers.
La somme des premiers carrés parfaits est donnée par la formule remarquable suivante :
Puissances | Résultats |
---|---|
0² | 0 |
1² | 1 |
2² | 4 |
3² | 9 |
4² | 16 |
5² | 25 |
6² | 36 |
7² | 49 |
8² | 64 |
9² | 81 |
[modifier] Voir aussi
- Nombre carré
- Trinôme carré parfait
- Algèbre polynomiale
- Décomposition en produit de facteurs premiers