Inégalité de Minkowski
Un article de Wikipédia, l'encyclopédie libre.
L'inégalité de Minkowski est ainsi dénommée en l'honneur de Hermann Minkowski. Elle peut être établie dans le cadre des espaces vectoriels préhilbertiens, réels ou complexes.
Cette inégalité est souvent appelée inégalité triangulaire puisqu'elle équivaut à cette dernière pour la distance associée à la norme. Par rapport à l'inégalité triangulaire usuelle pour les espaces vectoriels normés, l'avantage du théorème de Minkowski est qu'il est accompagné d'une condition nécessaire et suffisante pour qu'il y ait égalité.
L'inégalité de Minkowski permet de démontrer que la ligne droite est le chemin le plus court parmi les lignes polygonales
[modifier] Inégalité de Minkowski
Soit H un espace préhilbertien
Démonstration.
C'est une conséquence quasi immédiate de l'inégalité de Cauchy-Schwarz. En effet on a
. D'après Cauchy-Schwarz
. D'où
, ce qui donne bien le résultat.
[modifier] Cas d'égalité
On a appliqué deux majorations successives dans la démonstration précédente
- inégalité de Cauchy-Schwarz pour x et y
- majoration de la partie réelle du produit scalaire par son module
Une condition nécessaire et suffisante pour qu'il y ait égalité dans l'inégalité de Minkowski est que ces deux inégalités deviennent des égalités, soit
- x et y colinéaires ;
- et en plus leur rapport de colinéarité doit être un réel positif.
On énonce cela sous la forme : l'inégalité de Minkowski entre deux vecteurs est une égalité si et seulement si ces deux vecteurs sont positivement colinéaires, soit
Articles de mathématiques en rapport avec l'algèbre bilinéaire |
Espace euclidien | Forme bilinéaire | Forme quadratique | Forme sesquilinéaire | Orthogonalité | Base orthonormale | Projection orthogonale | Inégalité de Cauchy-Schwarz | Inégalité de Minkowski | Matrice définie positive | Décomposition QR | Déterminant de Gram | Hermitien | Espace de Hilbert | Base de Hilbert | Théorème spectral | Théorème de Stampacchia | Théorème de Riesz | Théorème de Lax-Milgram | Théorème de représentation de Riesz |
Modifier |
![]() |
Portail des mathématiques – Accédez aux articles de Wikipédia concernant les mathématiques. |