New Immissions/Updates:
boundless - educate - edutalab - empatico - es-ebooks - es16 - fr16 - fsfiles - hesperian - solidaria - wikipediaforschools
- wikipediaforschoolses - wikipediaforschoolsfr - wikipediaforschoolspt - worldmap -

See also: Liber Liber - Libro Parlato - Liber Musica  - Manuzio -  Liber Liber ISO Files - Alphabetical Order - Multivolume ZIP Complete Archive - PDF Files - OGG Music Files -

PROJECT GUTENBERG HTML: Volume I - Volume II - Volume III - Volume IV - Volume V - Volume VI - Volume VII - Volume VIII - Volume IX

Ascolta ""Volevo solo fare un audiolibro"" su Spreaker.
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Théorème de Lax-Milgram - Wikipédia

Théorème de Lax-Milgram

Un article de Wikipédia, l'encyclopédie libre.

Sommaire

[modifier] Énoncé

Soient :

Sous ces hypothèses il existe un unique u de \mathcal{H} tel que l'équation a(u,v) = Lv soit vérifiée pour tout v de \mathcal{H} :

(1) \quad \exists!\ u \in \mathcal{H},\ \forall v\in\mathcal{H},\quad a(u,v)=Lv

Si de plus la forme bilinéaire a est symétrique, alors u est l'unique élément de \mathcal{H} qui minimise la fonctionnelle J:\mathcal{H}\rightarrow\R définie par J(v)\ =\ \frac{1}{2}a(v,v)-Lv pour tout v de \mathcal{H}, c'est-à-dire :

(2) \quad \exists!\ u \in \mathcal{H},\quad J(u) = \min_{v\in\mathcal{H}}\ J(v)

[modifier] Démonstration

[modifier] Cas général

Par application du théorème de Riesz sur les formes linéaires continues, il existe un unique f\in\mathcal{H} tel que Lv=\langle f,v\rangle pour tout v\in\mathcal{H}.

Pour tout u\in\mathcal{H}, l'application v\mapsto a(u,v) est une forme linéaire continue sur \mathcal{H} et donc de la même manière, il existe un unique élément Au\in\mathcal{H} tel que a(u,v)=\langle Au,v\rangle pour tout v\in\mathcal{H}. On montre facilement que l'opérateur A ainsi défini est un endomorphisme linéaire continu sur \mathcal{H}. La relation (1) s'écrit donc de manière équivalente :

\exists!\ u \in \mathcal{H},\ Au=f

Pour prouver cette proposition, il suffit donc de montrer que A est une bijection de \mathcal{H} sur \mathcal{H}. On montre dans un premier temps que l'opérateur est injectif, puis qu'il est surjectif.

Par la coercivité de a et en appliquant l'inégalité de Cauchy-Schwarz, on a pour tout v\in\mathcal{H}

\alpha\|v\|^2 \leq a(v,v) = \langle Av,v\rangle \leq \|Av\|\|v\|

d'où \|Av\| \geq \alpha\|v\| pour tout v de \mathcal{H} (*), ce qui montre que A est injectif.

Soit \mathcal{Z} l'image de l'opérateur A dans \mathcal{H}. Comme A est endomorphisme linéaire continu satisfaisant à l'inégalité précédente (*) , on en déduit que \mathcal{Z} un sous-espace fermé de \mathcal{H} et que \mathcal{H} est la somme directe de \mathcal{Z} et \mathcal{Z}^{\perp}\mathcal{Z}^{\perp} est le sous-espace vectoriel orthogonal de \mathcal{Z}.

Soit ensuite un élément w de \mathcal{Z}^{\perp}, on a par définition \langle Aw,w\rangle = 0 et donc :

\alpha\|w\|^2 \leq a(w,w) = \langle Aw,w\rangle = 0

d'où w = 0. Ainsi, \mathcal{Z}^{\perp} est réduit à {0}, ce qui montre que A est surjectif.

L'endomorphisme A est bijectif, il existe donc un unique u de \mathcal{H} tel que Au=f\, et il est donné par \,u=A^{-1}f.

[modifier] Remarque

Sans calculer u on a l'inégalité

\|u\| \leq \frac{\|L\|'}{\alpha}

\|\cdot\|' désigne la norme de l'espace dual \mathcal{H}'.

[modifier] Cas Symétrique

Si la forme bilinéaire a est symétrique, on a pour tout w de \mathcal{H} :

J(u+w) = J(u)+\Big(a(u,w)-Lw\Big)+\frac{1}{2}a(w,w)

Comme u est l'unique solution de la proposition (1), cela donne

J(u+w) = J(u)+\frac{1}{2}a(w,w)

Et comme a est coercive, on a :

J(u+w) \geq J(u) + \frac{\alpha}{2}\|w\|^2

On a donc J(u) \leq J(v) pour tout v\in\mathcal{H}, d'où le résultat (2).

[modifier] Applications

  • Ce théorème est à la base des méthodes aux éléments finis, on peut en effet montrer que si au lieu de chercher u dans \mathcal{H} l'on cherche un dans \mathcal{H}_n, un sous espace de \mathcal{H} de dimension finie n, alors d'une part :
    • Dans le cas où a est symétrique un est le projeté de u au sens du produit scalaire définit par a
    • Si l'on se donne (\varphi_i) une base de \mathcal{H}_n, le problème se ramène alors à la résolution d'un système linéaire :

\underline{\underline{A}} \underline{u_n} = \underline{b} avec A_{ij}=a(\varphi_j,\varphi_i) et b_i=L\varphi_i

Articles de mathématiques en rapport avec l'algèbre bilinéaire
Espace euclidien | Forme bilinéaire | Forme quadratique | Forme sesquilinéaire | Orthogonalité | Base orthonormale | Projection orthogonale | Inégalité de Cauchy-Schwarz | Inégalité de Minkowski | Matrice définie positive | Décomposition QR | Déterminant de Gram | Hermitien | Espace de Hilbert | Base de Hilbert | Théorème spectral | Théorème de Stampacchia | Théorème de Riesz | Théorème de Lax-Milgram | Théorème de représentation de Riesz
Modifier
Portail des mathématiques – Accédez aux articles de Wikipédia concernant les mathématiques.
Autres langues

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu