Puissance (mathématiques élémentaires)
Un article de Wikipédia, l'encyclopédie libre.
Cet article fait partie de la série Mathématiques élémentaires |
Algèbre |
Analyse |
Arithmétique |
Géométrie |
Logique |
Probabilité |
Statistique |
L'étude élémentaire des puissances se fait dans le cadre de l'algèbre élémentaire.
La notion de puissance est un cas particulier de celle de produit.
La puissance d'exposant entier strictement positif d'un nombre réel est le résultat de la multiplication de ce nombre par lui-même un certain nombre de fois ; par exemple la puissance cubique du nombre a, notée a3, est le produit
- a × a × a.
En somme la puissance est à la multiplication ce que la multiplication est à l'addition.
On introduit ensuite les puissances d'exposant entier strictement négatif d'un nombre réel non nul, inverses des puissances d'exposant entier strictement positif de ce nombre réel, par exemple
- si a est un nombre réel non nul, .
Les opérations algébriques sur les puissances d'un nombre ou de plusieurs possèdent des propriétés particulières. Les puissances de dix, comme 10-5, sont d'une utilisation régulière dans les autres sciences, notamment en physique et en chimie.
Sommaire |
[modifier] Puissance à exposant positif
On considère un nombre a quelconque et un entier naturel n non nul. La puissance énième de a, notée a n et lu « a exposant n » ou « a puissance n », est le résultat de la multiplication de ce nombre a par lui-même n fois :
- a n = a × a ×...× a, n fois.
Le nombre n est appelé l'exposant de la puissance a n.
Le nombre n étant un nombre positif, car entier naturel, a n est une puissance à exposant entier positif de a.
- Cas particuliers
- On notera que a1 = a.
- On appelle a 2 la puissance carrée, ou le carré, de a.
- On appelle a 3 la puissance cubique, ou le cube, de a.
On remarque facilement que, quel que soit l'entier naturel n non nul, 0 n = 0.
[modifier] Puissance à exposant nul
Pour tout nombre réel a non nul, on pose par convention que a 0 = 1.
Dans certains contextes il est utile et acceptable de poser que c'est vrai également pour a = 0. Par exemple, pour que le polynôme X 0 représente bien la fonction constante de valeur 1. De même, dans le cadre de la théorie axiomatique des ensembles et des nombres cardinaux on peut montrer que 00 = 1. La définition de la puissance est ici très particulière, et ne correspond en rien au sens élémentaire.
Dans d'autres contextes 00 n'est pas définie.
[modifier] Puissance à exposant négatif
On considère maintenant un nombre a non nul et un entier naturel n. Le nombre a-n, lu « a exposant moins n » ou « a puissance moins n », est l'inverse de la puissance énième de a, c'est-à-dire :
On comprend qu'il a fallu exclure 0 de cette définition car l'inclure serait revenu à vouloir diviser par 0, ce qui est impossible.
Le nombre -n est l'exposant de la puissance a-n.
Le nombre -n étant négatif, car n est un entier naturel, a-n est une puissance de a à exposant négatif. On notera, en particulier, que a-1 = 1/a (l'inverse du nombre a ).
[modifier] Signe de l'exposant et signe du nombre
Il n'y a pas de rapport entre le signe de l'exposant et le signe du nombre.
- Un nombre élevé à une puissance paire (positive ou négative) donnera toujours un résultat positif.
- Un nombre élevé à une puissance impaire donnera un résultat du même signe.
Par exemple
- (- 2)3, puissance cubique de -2, vaut (-2)×(-2)×(-2)=-8 < 0.
- 3-4, l'inverse de la puissance quatrième de 3, vaut
[modifier] Opérations algébriques sur les puissances
Il n'y a pas de formule générale sur les additions ou les soustractions de puissances sauf la factorisation de an − bn et le développement de (a + b)n.
En revanche, pour les multiplications et les divisions de puissances on sait que, pour tous nombres a et b et pour tous entiers naturels m et n non nuls :
- pour tout a non nul
- pour tout b non nul
Ces formules sont encore valables si m et/ou n sont des entiers strictement négatifs à condition que a, comme b, soient non-nuls.
On remarque que la convention « a0 = 1 pour tout nombre réel non nul a » est cohérente avec ces formules ; en effet, pour tout entier naturel n non nul et pour tout nombre réel a non nul :
et- .
On remarquera qu'en prenant n = 0, les égalités précédentes restent vraies.
[modifier] Puissances de dix
Les puissances de 10 sont des cas particuliers de puissances. Leur intérêt réside dans le fait que notre écriture est décimale.
100 = 1 | |
10-1 = 0,1 | 101 = 10 |
10-2 = 0,01 | 102 = 100 |
10-3 = 0,001 | 103 = 1 000 |
10-4 = 0,000 1 | 104 = 10 000 |
10-5 = 0,000 01 | 105 = 100 000 |
10-6 = 0,000 001 | 106 = 1 000 000 |
… | … |
Dix élevé à une puissance entière positive n est un 1 suivi de n zéros. Dix élevé à une puissance entière négative -n est un 1 placé à la n e position dans un nombre décimal (précédé de n zéros en comptant celui avant la virgule).
On utilise fréquemment les puissances multiples de trois, qui correspondent aux préfixes du système international :
Puissance de dix | Préfixe SI | Puissance de dix | Préfixe SI | |
---|---|---|---|---|
10-3 = 0,001 un millième |
m (milli-) | 103 = 1 000 mille |
k (kilo-) | |
10-6 = 0,000 001 un millionième |
µ (micro-) | 106 = 1 000 000 un million |
M (méga-) | |
10-9 = 0,000 000 001 un milliardième |
n (nano-) | 109 = 1 000 000 000 un milliard |
G (giga-) | |
… | … | … | … |
Si la virgule signale la position des unités dans l'écriture d'un nombre décimal, multiplier par 10 revient à déplacer la virgule d'un rang vers la droite et diviser par 10 revient à déplacer la virgule d'un rang vers la gauche. Donc, multiplier par 10n pour tout n entier positif, revient à déplacer la virgule de n rangs vers la droite et diviser par 10n pour tout n entier positif, revient à déplacer la virgule de n rangs vers la gauche. Ainsi
- 325,72 × 10 = 3 257,2
- 325,72/10 = 32,572
- 325,72 × 105 = 32 572 000
- 325,72/105 = 0,003 257 2
Il faut savoir que ce sont la base des théories pour faire tous les calculs par la suite.
Les propriétés énoncées sur les puissances de a restent valables pour les puissances de 10.
L'utilisation des puissances de 10 intervient
- dans l'écriture explicite en base 10 :
- 325,72 = 3 × 102 + 2 × 10 + 5 + 7 × 10-1 + 2 × 10-2
- dans l'écriture scientifique des nombres décimaux :
- 325,72 est noté 3,257 2 × 102
- où le nombre est écrit comme le produit d'un nombre, appelé mantisse, compris entre 1 et 10 (strictement inférieur à 10), avec une puissance entière de 10 appelée exposant ;
- et dans la notation ingénieur :
- 325,72 est noté 325,72
- 32 572 est noté 32,572 × 103
- où le nombre est écrit comme produit d'un nombre compris entre 1 et 1 000 (strictement inférieur à 1 000) avec une puissance de 10 dont l'exposant est un multiple de 3.
[modifier] Exponentielle
Les puissances entières sont en fait des cas particuliers de la fonction exponentielle :
- ab = exp(b⋅ln a) définie par tout réel a strictement positif
À partir de la fonction exponentielle, on peut définir :
- des puissances fractionnaires : , n étant un entier (voir Racine carrée, Racine cubique et Racine énième) qui coïncident avec les racines énièmes pour tout x strictement positif
- des puissances réelles : x y peut être défini pour un y réel et tout x strictement positif.
Ces puissances fractionnaires et réelles répondent aux même règles que les puissances entières, notamment
Pour tout a > 0 , b et c réels quelconques. On a en particulier
- , pour tout b entier
- , c étant un entier ;
- si b est non nul :
Portail des mathématiques – Accédez aux articles de Wikipédia concernant les mathématiques. |