Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Web Analytics
Cookie Policy Terms and Conditions Generating function - Wikipedia, the free encyclopedia

Generating function

From Wikipedia, the free encyclopedia

In mathematics a generating function is a formal power series whose coefficients encode information about a sequence an that is indexed by the natural numbers.

There are various types of generating functions, including ordinary generating functions, exponential generating functions, Lambert series, Bell series, and Dirichlet series; definitions and examples are given below. Every sequence has a generating function of each type. The particular generating function that is most useful in a given context will depend upon the nature of the sequence and the details of the problem being addressed.

Generating functions are often expressed in closed form as functions of a formal argument x. Sometimes a generating function is evaluated at a specific value of x. However, it must be remembered that generating functions are formal power series, and they will not necessarily converge for all values of x.

Contents

[edit] Definitions

A generating function is a clothesline on which we hang up a sequence of numbers for display.
Herbert Wilf, Generatingfunctionology (1994)

[edit] Ordinary generating function

The ordinary generating function of a sequence an is

G(a_n;x)=\sum_{n=0}^{\infty}a_nx^n.

When the term generating function is used without qualification, it is usually taken to mean an ordinary generating function.

If an is the probability mass function of a discrete random variable, then its ordinary generating function is called a probability-generating function.

The ordinary generating function can be generalised to sequences with multiple indexes. For example, the ordinary generating function of a sequence am,n (where n and m are natural numbers) is

G(a_{m,n};x,y)=\sum_{m,n=0}^{\infty}a_{m,n}x^my^n.

[edit] Exponential generating function

The exponential generating function of a sequence an is

EG(a_n;x)=\sum _{n=0}^{\infty} a_n \frac{x^n}{n!}.

[edit] Poisson generating function

The Poisson generating function of a sequence an is

PG(a_n;x)=\sum _{n=0}^{\infty} a_n e^{-x} \frac{x^n}{n!}.

[edit] Lambert series

The Lambert series of a sequence an is

LG(a_n;x)=\sum _{n=1}^{\infty} a_n \frac{x^n}{1-x^n}.

Note that in a Lambert series the index n starts at 1, not at 0.

[edit] Bell series

The Bell series of an arithmetic function f(n) and a prime p is

f_p(x)=\sum_{n=0}^\infty f(p^n)x^n.

[edit] Dirichlet series generating functions

Dirichlet series are often classified as generating functions, although they are not strictly formal power series. The Dirichlet series generating function of a sequence an is

DG(a_n;s)=\sum _{n=1}^{\infty} \frac{a_n}{n^s}.

The Dirichlet series generating function is especially useful when an is a multiplicative function, when it has an Euler product expression in terms of the function's Bell series

DG(a_n;s)=\prod_{p} f_p(p^{-s})\,.

If an is a Dirichlet character then its Dirichlet series generating function is called a Dirichlet L-series.

[edit] Polynomial sequence generating functions

The idea of generating functions can be extended to sequences of other objects. Thus, for example, polynomial sequences of binomial type are generated by

e^{xf(t)}=\sum_{n=0}^\infty {p_n(x) \over n!}t^n

where pn(x) is a sequence of polynomials and f(t) is a function of a certain form. Sheffer sequences are generated in a similar way. See the main article generalized Appell polynomials for more information.

[edit] Examples

A few brief examples follow.

Generating functions for the sequence of square numbers an = n2 are:

[edit] Ordinary generating function

G(n^2;x)=\sum_{n=0}^{\infty}n^2x^n=\frac{x(x+1)}{(1-x)^3}

[edit] Exponential generating function

EG(n^2;x)=\sum _{n=0}^{\infty} \frac{n^2x^n}{n!}=x(x+1)e^x

[edit] Bell series

f_p(x)=\sum_{n=0}^\infty p^{2n}x^n=\frac{1}{1-p^2x}

[edit] Dirichlet series generating function

DG(n^2;s)=\sum_{n=1}^{\infty} \frac{n^2}{n^s}=\zeta(s-2)

[edit] Applications

Generating functions are used to

  • Find recurrence relations for sequences – the form of a generating function may suggest a recurrence formula.
  • Find relationships between sequences – if the generating functions of two sequences have a similar form, then the sequences themselves are probably related.
  • Explore the asymptotic behaviour of sequences.
  • Prove identities involving sequences.
  • Solve enumeration problems in combinatorics.
  • Evaluate infinite sums.

[edit] Other generating functions

Examples of polynomial sequences generated by more complex generating functions include:

[edit] See also

[edit] References

  • Donald E. Knuth, The Art of Computer Programming, Volume 1 Fundamental Algorithms (Third Edition) Addison-Wesley. ISBN 0-201-89683-4. Section 1.2.9: Generating Functions, pp.87–96.
  • Ronald L. Graham, Donald E. Knuth, Oren Parashnik, Concrete Mathematics. A foundation for computer science (Second Edition) Addison-Wesley. ISBN 0-201-55802-5. Chapter 7: Generating Functions, pp. 320–380

[edit] External links

Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu