New Immissions/Updates:
boundless - educate - edutalab - empatico - es-ebooks - es16 - fr16 - fsfiles - hesperian - solidaria - wikipediaforschools
- wikipediaforschoolses - wikipediaforschoolsfr - wikipediaforschoolspt - worldmap -

See also: Liber Liber - Libro Parlato - Liber Musica  - Manuzio -  Liber Liber ISO Files - Alphabetical Order - Multivolume ZIP Complete Archive - PDF Files - OGG Music Files -

PROJECT GUTENBERG HTML: Volume I - Volume II - Volume III - Volume IV - Volume V - Volume VI - Volume VII - Volume VIII - Volume IX

Ascolta ""Volevo solo fare un audiolibro"" su Spreaker.
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Funzione generatrice - Wikipedia

Funzione generatrice

Da Wikipedia, l'enciclopedia libera.

In matematica una funzione generatrice è una serie formale di potenze i cui coefficienti costituiscono i componenti an di una successione indicizzata dai numeri naturali; spesso questa successione viene rappresentata efficacemente dalla funzione generatrice, specialmente quando per questa si trova qualche espressione sufficientemente maneggevole e significativa.

Sono studiati vari tipi di funzioni generatrici, come funzioni generatrici ordinarie, funzioni generatrici esponenziali, serie di Lambert, serie di Bell e serie di Dirichlet; qui di seguito ne sono date le definizioni e alcuni esempi. Ad ogni successione possono essere associate le funzioni generatrici di tutti i tipi. Quale può essere la particolare funzione generatrice che risulta più utile in un dato contesto dipende dalla natura della successione e dai dettagli del problema che si sta affrontando.

Le funzioni generatrici sono spesso individuate in una forma chiusa come funzioni di una variabile formale x. Talvolta risulta utile valutare una funzione generatrice per uno specifico valore reale o complesso della x. Tuttavia occorre tenere presente che le funzioni generatrici sono serie formali di potenze e per esse non viene necessariamente richiesta la convergenza per determinati valori attribuiti alla x.

Indice

[modifica] Definizioni

Una funzione generatrice è una corda da bucato usata per appendervi una successione numerica per metterla in mostra.
— Herbert Wilf, generatingfunctionology (1994)

[modifica] Funzione generatrice ordinaria

La funzione generatrice ordinaria di una successione an è

G(a_n;x)=\sum_{n=0}^{\infty}a_nx^n .

Quando il termine funzione generatrice è usato senza qualificazione, di solito si intende che si tratta di una funzione generatrice ordinaria.

Se la successione an è una funzione di massa di probabilità di una variabile casuale discreta, allora la sua funzione generatrice ordinaria viene chiamata funzione generatrice di probabilità.

La funzione generatrice ordinaria può essere generalizzata a successioni relative a indici multipli. Ad esempio, la funzione generatrice ordinaria di una successione am,n (con n ed m numeri naturali) ha la forma

G(a_{m,n};x,y)=\sum_{m,n=0}^{\infty}a_{m,n}x^my^n .

[modifica] Esempio informatico

Nell'informatica le funzioni generatrici sono molto utilizzate soprattutto per quanto concerne l'analisi degli algoritmi. Ad esempio si vuole determinare il numero di volte che un blocco di istruzioni all’interno di un costrutto iterativo viene eseguito.

CASO A

 ...
 for (i=1; i<=n; i++)
 {printf("ciao");}
 ...

In questo caso stampiamo la stringa ciao per iterazioni che vanno da 1 a n. Otteniamo così

\sum_{i=i}^n 1 = n

ipotizzando che la stampa della stringa ciao abbia costo uniforme.


CASO B

 ...
 for (i=1; i<=n; i++)
 for (j=1; j<=i; j++)
 {printf("ciao");}
 ...

la stringa ciao viene stampata 1 volta ad ogni iterazione del ciclo più interno (j) ed i volte ad ogni iterazione del ciclo esterno (i). Complessivamente:

\sum_{i = 1} ^ n \sum_{j = 1}^i 1 = \sum_{i =1}^n i = \frac {n (n+1)} {2} ricordando la formula di Gauss.

In generale avendo k cicli innestati ci si riconduce a valutare una sommatoria della serie

\sum_{i_1=1}^n \sum_{i_2=1}^{i_1} ... \sum{i_k=1}^{i_{k-1}} 1

CASO C

 for (i=1; i<=n; i++)
 for (j=1; j<=i; j++)
 for (k=1; k<=j; k++)
 {printf("ciao");}

\sum_{i=1}^n \sum_{j=1}^i \sum_{k=1}^j 1 = \sum_{i=1}^n \sum_{j=1}^i j = \sum_{i=1}^n \frac {i (i+1)}{2}

Bisogna valutare \sum_{i=1}^n \frac {i (i+1)}{2}

\sum_{i=1}^n \frac {i (i+1)}{2} = 1 + 3 + 6 = 1/2 \sum_{i = 1}^n i^2 + 1/2 \sum_{i=1}^n i = 1/2 \sum_{i=1}^n i^2 + n^2/4 + n /4

[modifica] Funzione generatrice esponenziale

La funzione generatrice esponenziale di una successione an è

EG(a_n;x)=\sum _{n=0}^{\infty} a_n \frac{x^n}{n!}.

[modifica] Serie di Lambert

La serie di Lambert di una successione an è

LG(a_n;x)=\sum _{n=1}^{\infty} a_n \frac{x^n}{1-x^n} .

Si noti che in una serie di Lambert l'indice n ha come primo valore 1, non 0.

[modifica] Serie di Bell

La serie di Bell associata ad una funzione aritmetica f(n) e ad un numero primo p è

f_p(x) := \sum_{n=0}^\infty f(p^n)x^n .

[modifica] Funzioni generatrici serie di Dirichlet

Le serie di Dirichlet sono in genere classificate come funzioni generatrici, anche se a rigore non sono serie formali di potenze. La funzione generatrice serie di Dirichlet di una successione an è

DG(a_n;s)=\sum _{n=1}^{\infty} \frac{a_n}{n^s} .

La funzione generatrice serie di Dirichlet è specialmente utile quando an è una funzione moltiplicativa, cioè quando possiede una espressione prodotto di Eulero in termini della serie di Bell della funzione

DG(a_n;s)=\prod_{p} f_p(p^{-s}) \, .

Se an è un carattere di Dirichlet, allora la funzione generatrice con serie di Dirichlet viene chiamata serie L di Dirichlet.

[modifica] Funzione generatrici di sequenze polinomiali

La nozione di funzione generatrice può essere estesa a successioni di oggetti che non sono semplici numeri. Così, ad esempio, le sequenze polinomiali di tipo binomiale sono generate da

e^{xf(t)}=\sum_{n=0}^\infty {p_n(x) \over n!}t^n ,

dove pn(x) è una sequenza polinomiale e f(t) una funzione di una determinata forma. Le sequenza di Sheffer sono generate in un modo simile. Per maggiori informazioni su questo argomento, vedi la voce principale polinomi generalizzati di Appell.

[modifica] Esempio delle funzioni generatrici della successione dei quadrati

Passiamo in rassegna le funzioni generatrici per la successione dei quadrati perfetti an = n2.

Funzione generatrice ordinaria

G(n^2;x)=\sum_{n=0}^{\infty}n^2x^n=\frac{x(x+1)}{(1-x)^3}

Funzione generatrice esponenziale

EG(n^2;x)=\sum _{n=0}^{\infty} \frac{n^2x^n}{n!}=x(x+1)e^x

Serie di Bell

f_p(x)=\sum_{n=0}^\infty p^{2n}x^n=\frac{1}{1-p^2x}

Funzione generatrice con serie di Dirichlet

DG(n^2;s)=\sum_{n=1}^{\infty} \frac{n^2}{n^s}=\zeta(s-2)

[modifica] Un esempio di manipolazione di funzione generatrice

Si possono costruire funzioni generatrici arricchendo la forma di funzioni generatrici più semplici. Ad esempio, iniziamo con

G(1;x)=\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}

e sostituiamo x con 2x; otteniamo

G(1;2x)=\frac{1}{1-2x} = 1+(2x)+(2x)^2+\ldots+(2x)^n+\ldots=G(2^n;x) .

[modifica] Un esempio dettagliato sui numeri di Fibonacci

Consideriamo il problema di trovare una formula chiusa per i numeri di Fibonacci fn definiti da f0 := 0, f1 := 1 e fn := fn−1 + fn−2 per n ≥ 2. Componiamo la funzione generatrice ordinaria

f = \sum_{n \ge 0} f_n X^n

per questa successione. La funzione generatrice per la successione (fn−1) è Xf e quella di (fn−2) è X2f. Dalla relazione di ricorrenza si ricava quindi che la serie di potenze Xf + X2f ha gli stessi coefficienti della f ad esclusione dei primi due. Tenendo conto di questi si trova che

f = Xf + X^2 f + X \,

Questo è il passo cruciale; Le relazioni di ricorrenza possono quasi sempre essere tradotte in equazioni per le funzioni generatrici. Risolvendo questa equazione per f otteniamo

f = \frac{X} {1 - X - X^2} .

Il denominatore si può fattorizzare usando la sezione aurea φ1 = (1 + √5)/2 e φ2 = (1 − √5)/2; la tecnica della decomposizione in frazioni parziali porta a

f = \frac{1 / \sqrt{5}} {1-\phi_1 X} - \frac{1/\sqrt{5}} {1- \phi_2 X} .

Queste due serie formali di potenze sono note esplicitamente in quanto sono serie geometriche; confrontando i coefficienti si trova la formula esplicita

f_n = \frac{1} {\sqrt{5}} (\phi_1^n - \phi_2^n) .

[modifica] Applicazioni

Le funzioni generatrici sono utilizzate per vari procedimenti.

  • Trovare relazioni di ricorrenza per i componenti di successioni: la forma di una funzioni generatrice può suggerire una formula di ricorrenza.
  • Trovare relazioni tra successioni: se le funzioni generatrici di due successioni hanno forme simili, probabilmente le stesse successioni sono in qualche relazione significativa.
  • Esplorare il comportamento asintotico di successioni.
  • Dimostrare identità concernenti successioni.
  • Risolvere problemi di enumerazione in combinatorica.
  • Valutare valori cui convergono date serie.

[modifica] Voci correlate

[modifica] Bibliografia

[modifica] Collegamenti esterni

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu