New Immissions/Updates:
boundless - educate - edutalab - empatico - es-ebooks - es16 - fr16 - fsfiles - hesperian - solidaria - wikipediaforschools
- wikipediaforschoolses - wikipediaforschoolsfr - wikipediaforschoolspt - worldmap -

See also: Liber Liber - Libro Parlato - Liber Musica  - Manuzio -  Liber Liber ISO Files - Alphabetical Order - Multivolume ZIP Complete Archive - PDF Files - OGG Music Files -

PROJECT GUTENBERG HTML: Volume I - Volume II - Volume III - Volume IV - Volume V - Volume VI - Volume VII - Volume VIII - Volume IX

Ascolta ""Volevo solo fare un audiolibro"" su Spreaker.
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Fermat-számok - Wikipédia

Fermat-számok

A Wikipédiából, a szabad lexikonból.

A Fermat-számok a matematikában elsőként Pierre de Fermat (e. ~: Pier dö Fermá) által tanulmányozott (és róla elnevezett) pozitív egész számok, mégpedig a következő sorozat elemei:

F_{n} = 2^{(2^n)} + 1

(n ∈ N nemnegatív egész). Tehát ha egy kettőhatványt kettes hatványalapra emelünk és hozzáadunk egyet, Fermat-számot kapunk.

Az első nyolc Fermat-szám:

F0 = 21 + 1 = 3
F1 = 22 + 1 = 5
F2 = 24 + 1 = 17
F3 = 28 + 1 = 257
F4 = 216 + 1 = 65537
F5 = 232 + 1 = 4294967297 = 641 × 6700417
F6 = 264 + 1 = 18446744073709551617 = 274177 × 67280421310721
F7 = 2128 + 1 = 340282366920938463463374607431768211457 = 59649589127497217 × 5704689200685129054721

Jelenleg csak az az első 12 Fermat-szám prímtényezőkre bontását ismerjük teljesen. Az ismert információk megtalálhatók a itt (Prime Factors of Fermat Numbers) lapon.

Tartalomjegyzék

[szerkesztés] Fermat-prímek

Fő szócikk: Fermat-prímek

Ha Fn = 2n + 1 prímszám, akkor – amint ez megmutatható – n szükségképp 2-hatvány. (Ha nem ilyen, akkor van 1-nél nagyobb páratlan osztója, mondjuk n = ab, ahol 1 < b páratlan, úgy 2n + 1 = (2a)b + 1 ≡ (−1)b + 1 ≡ 0 (mod 2a + 1).) Más szóval, minden 2n + 1 alakú prím Fermat-szám, így Fermat-prímnek nevezendő. Az ismert Fermat-prímek a következők: F0,...,F4.

[szerkesztés] Tulajdonságok

A Fermat-számok sorozata eleget tesz a következő, rekurzív definícióra is alkalmas egyenlőségeknek (n ≥ 2-re), melyek mindegyike indukcióval belátható:

Fn = (Fn − 1 − 1)2 + 1
F_{n} = F_{n-1}^2 - 2(F_{n-2}-1)^2
F_{n} = F_{n-1} + 2^{2^{n-1}}F_{0} \cdots F_{n-2}
F_{n} = F_{0} \cdots F_{n-1} + 2 = \prod_{i=0}^{n-1} F_{i} +2

Az utolsó egyenlőség felhasználásával belátható Goldbach tétele; ti. bármely két Fermat-szám relatív prím (mellesleg, ebből meg bizonyítható, hogy végtelen sok prímszám van).

[szerkesztés] Prímteszt

Mint speciális alakú számokra oly gyakran, egyszerű prímteszt van Fermat-számokra. Ha n\geq 1, akkor az F_n=2^{2^n}+1 Fermat-szám pontosan akkor prím, ha

3^{\frac{F_n-1}{2}}\equiv -1 \pmod{F_n}

teljesül.

[szerkesztés] Prímosztók

Ha k legalább 2, az Fk szám minden prímosztója p=x2k+2+1 alakú. Ennek bizonyításához legyen d 2 rendje mod p, azaz a legkisebb olyan kitevő, hogy 2^d\equiv 1\pmod{p}. Mivel

2^{2^k}\equiv -1 \pmod{p},

d nem osztja 2k-t de osztja 2k+1-et. de ekkor d csak 2k+1 lehet. Márészt a kis Fermat-tétel miatt d osztója p-1-nek, azaz p=x2k+1+1 alakú, tehát 8-cal osztva 1-et ad maradékul. Ezért a Legendre-szimbólum tulajdonságai miatt

2^{\frac{p-1}{2}}\equiv\left(\frac{2}{p}\right)\equiv 1\pmod{p}

ahonnan adódik, hogy d osztja (p-1)/2-t, ami azonos azzal, amit állítottunk.


Ez megkönnyíti a Fermat-számok prímfelbontását, ami a Mersenne-prímek kutatásához hasonló internetes-programozói versennyé kezd válni. Például ha F5-öt próbáljuk felbontani, a prímosztókat 128x+1 alakban kell keresnünk. Az x=1,3,4 esetek kiesnek, mert ekkor 128x+1 összetett, x=2-re 257=F3-t kapjuk, ami a fentiek szerint nem oszthatja F5-öt tehát az első igazi eset p=641 és ez valóban osztó.

[szerkesztés] Sejtések

Sok sejtést lehet a Fermat-számokról felállítani és ezek mindegyike reménytelenül nehéz. Sejtjük, de nem tudjuk bizonyítani, hogy az ismerteken kívül nincs több prím. De még azt sem tudjuk, hogy végtelen sok összetett Fermat-szám van, hogy mind négyzetmentes, vagy akár, hogy végtelen sok négyzetmentes Fermat-szám van. Azt könnyű belátni, hogy egyik sem valódi prímhatvány.


[szerkesztés] Források

  • 17 Lectures on Fermat Numbers: From Number Theory to Geometry, Michal Krizek, Florian Luca, Lawrence Somer, Springer, CMS Books 9, 257 oldal (!) ISBN 0387953329
  • Courant-Robins: Mi a matematika?.

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu