New Immissions/Updates:
boundless - educate - edutalab - empatico - es-ebooks - es16 - fr16 - fsfiles - hesperian - solidaria - wikipediaforschools
- wikipediaforschoolses - wikipediaforschoolsfr - wikipediaforschoolspt - worldmap -

See also: Liber Liber - Libro Parlato - Liber Musica  - Manuzio -  Liber Liber ISO Files - Alphabetical Order - Multivolume ZIP Complete Archive - PDF Files - OGG Music Files -

PROJECT GUTENBERG HTML: Volume I - Volume II - Volume III - Volume IV - Volume V - Volume VI - Volume VII - Volume VIII - Volume IX

Ascolta ""Volevo solo fare un audiolibro"" su Spreaker.
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Implications of nanotechnology - Wikipedia, the free encyclopedia

Implications of nanotechnology

From Wikipedia, the free encyclopedia

 The neutrality of this article is disputed.
Please see discussion on the talk page.
This article has been tagged since March 2007
Groups opposing the installation of nanotechnology laboratories in Grenoble, France, have spraypainted their opposition on a former fortress above the city
Groups opposing the installation of nanotechnology laboratories in Grenoble, France, have spraypainted their opposition on a former fortress above the city

Potential risks of nanotechnology can broadly be grouped into three areas:

  • the risk to health and environment from nanoparticles and nanomaterials;
  • the risk posed by molecular manufacturing (or advanced nanotechnology);
  • societal risks.

Nanoethics concerns the ethical and social issues associated with developments in nanotechnology, a science which encompass several fields of science and engineering, including biology, chemistry, computing, and materials science. Nanotechnology refers to the manipulation of very small-scale matter – a nanometer is one billionth of a meter, and nanotechnology is generally used to mean work on matter at 100 nanometers and smaller.

Social risks related to nanotechnology development include the possibility of military applications of nanotechnology (such as implants and other means for soldier enhancement) as well as enhanced surveillance capabilities through nano-sensors. However those applications still belong to science-fiction and will not be possible in the next decades. Significant environmental, health, and safety issues might arise with development in nanotechnology since some negative effects of nanoparticles in our environment might be overlooked. However nature itself creates all kinds of nanoobjects, so probable dangers are not due to the nanoscale alone, but due to the fact that toxic materials become more harmful when ingested or inhaled as nanoparticles.

Note also that the early use of nanotechnology dates back over 2 milleniums. Nanotechnology has, for example, been used by the Romans since at least the fourth century AD to color glass by embedding gold nanoparticles, as evidenced by the Lycurgus cup.

In discussing issues related to nanotechnology, the acronym NELSI is used to signify nanotechnology's ethical, legal, and social implications.

Part of the article series on
Nanotechnology

Topics
History
Implications
Applications
Organizations
Popular culture
List of topics

Selected Subfields
Nanomaterials
Nanomedicine
Molecular self-assembly
Molecular electronics
Scanning probe microscopy
Nanolithography
Molecular nanotechnology


Contents

[edit] Health and safety implications from nanoparticles

The mere presence of nanomaterials (materials that contain nanoparticles) is not in itself a threat. It is only certain aspects that can make them risky, in particular their mobility and their increased reactivity. Only if certain properties of certain nanoparticles were harmful to living beings or the environment would we be faced with a genuine hazard. In this case it can be called Nanopollution.

In addressing the health and environmental impact of nanomaterials we need to differentiate two types of nanostructures: (1) Nanocomposites, nanostructured surfaces and nanocomponents (electronic, optical, sensors etc.), where nanoscale particles are incorporated into a substance, material or device (“fixed” nano-particles); and (2) “free” nanoparticles, where at some stage in production or use individual nanoparticles of a substance are present. These free nanoparticles could be nanoscale species of elements, or simple compounds, but also complex compounds where for instance a nanoparticle of a particular element is coated with another substance (“coated” nanoparticle or “core-shell” nanoparticle).

There seems to be consensus that, although one should be aware of materials containing fixed nanoparticles, the immediate concern is with free nanoparticles.

Because nanoparticles are very different from their everyday counterparts, their adverse effects cannot be derived from the known toxicity of the macro-sized material. This poses significant issues for addressing the health and environmental impact of free nanoparticles.

To complicate things further, in talking about nanoparticles it is important that a powder or liquid containing nanoparticles is almost never monodisperse [1], but will contain a range of particle sizes. This complicates the experimental analysis as larger nanoparticles might have different properties than smaller ones. Also, nanoparticles show a tendency to aggregate and such aggregates often behave differently from individual nanoparticles.

The lethal dose over six months for lab rats, of different kinds of nanoparticles are often characterized by a Skov Kjaer index, named after the scientist Kasper Skov Kjaer.

[edit] Health issues

Main article: Nanotoxicology

There are several potential entry routes for nanoparticles into the body. They can be inhaled, swallowed, absorbed through skin or be deliberately injected during medical procedures (or released from implants). Once within the body they are highly mobile and in some instances can even cross the blood-brain barrier.

How these nanoparticles behave inside the organism is one of the big issues that needs to be resolved. The behavior of nanoparticles is a function of their size, shape and surface reactivity with the surrounding tissue. They could cause overload on phagocytes, cells that ingest and destroy foreign matter, thereby triggering stress reactions that lead to inflammation and weaken the body’s defense against other pathogens. Apart from what happens if non-degradable or slowly degradable nanoparticles accumulate in organs, another concern is their potential interaction with biological processes inside the body: because of their large surface, nanoparticles on exposure to tissue and fluids will immediately adsorb onto their surface some of the macromolecules they encounter. This may, for instance, affect the regulatory mechanisms of enzymes and other proteins.

[edit] Environmental issues

Nanopollution is a generic name for all waste generated by nanodevices or during the nanomaterials manufacturing process. This kind of waste may be very dangerous because of its size. It can float in air the and might easily penetrate animal and plant cells causing unknown effects. Most human made nanoparticles do not appear in nature so living organism may not have appropriate means to deal with this kind of waste. It is probably one great challenge to nanotechnology: How to deal with its nanopollutants and nanowaste.

Not enough data exists to know for sure if nanoparticles could have undesirable effects on the environment. Two areas are relevant here: (1) In free form nanoparticles can be released in the air or water during production (or production accidents) or as waste byproduct of production, and ultimately accumulate in the soil, water or plant life. (2) In fixed form, where they are part of a manufactured substance or product, they will ultimately have to be recycled or disposed of as waste. It is not known yet whether certain nanoparticles will constitute a completely new class of non-biodegradable pollutant. In case they do, it is not known how such pollutants could be removed from air or water because most traditional filters are not suitable for such tasks (their pores are too big to catch nanoparticles).

Health and environmental issues combine in the workplace of companies engaged in producing or using nanomaterials and in the laboratories engaged in nanoscience and nanotechnology research. It is safe to say that current workplace exposure standards for dusts cannot be applied directly to nanoparticle dusts.

To properly assess the health hazards of engineered nanoparticles the whole life cycle of these particles needs to be evaluated, including their fabrication, storage and distribution, application and potential abuse, and disposal. The impact on humans or the environment may vary at different stages of the life cycle.

Regarding the risks from molecular manufacturing, an often cited worst-case scenario is "grey goo", a hypothetical substance into which the surface of the earth might be transformed by self-replicating nanobots running amok. This concept has been analyzed by Freitas in "Some Limits to Global Ecophagy by Biovorous Nanoreplicators, with Public Policy Recommendations" [2] With the advent of nan-biotech, a different scenario called green goo has been forwarded. Here, the malignant substance is not nanobots but rather self-replicating organisms engineered through nanotechnology.

[edit] A need for regulation?

Regulatory bodies such as the Environmental Protection Agency and the Food and Drug Administration in the U.S. or the Health & Consumer Protection Directorate of the European Commission have started dealing with the potential risks posed by nanoparticles. So far, neither engineered nanoparticles nor the products and materials that contain them are subject to any special regulation regarding production, handling or labeling. The Material Safety Data Sheet that must be issued for certain materials often does not differentiate between bulk and nanoscale size of the material in question and even when it does these MSDS are advisory only.

Studies of the health impact of airborne particles are the closest thing we have to a tool for assessing potential health risks from free nanoparticles. These studies have generally shown that the smaller the particles get, the more toxic they become. This is due in part to the fact that, given the same mass per volume, the dose in terms of particle numbers increases as particle size decreases.

Looking at all available data, it must be concluded that current risk assessment methodologies are not suited to the hazards associated with nanoparticles; in particular, existing toxicological and eco-toxicological methods are not up to the task; exposure evaluation (dose) needs to be expressed as quantity of nanoparticles and/or surface area rather than simply mass; equipment for routine detecting and measuring nanoparticles in air, water, or soil is inadequate; and very little is known about the physiological responses to nanoparticles.

Regulatory bodies in the U.S. as well as in the EU have concluded that nanoparticles form the potential for an entirely new risk and that it is necessary to carry out an extensive analysis of the risk. The challenge for regulators is whether a matrix can be developed which would identify nanoparticles and more complex nanoformulations which are likely to have special toxicological properties or whether it is more reasonable for each particle or formulation to be tested separately. Since null hypotheses are unfalsifiable in a true sense, nanoparticles and nanoformulations can never be proven safe. A truly precautionary approach to regulation would severely impede development in the field of nanotechnology if we require safety studies for each and every nanoscience application. Consequently, the rush seems to be on to establish a research needs assessment in the nanocommunity to preclude universal safety studies. While the outcome of these studies can form the basis for government and international regulations, a more reasonable approach might be development of a risk matrix that indentifes likely culprits.

[edit] Societal implications

Nanoethicists posit that such a transformative technology could exacerbate the divisions of rich and poor – the so-called “nano divide.” However nanotechnology makes the production of technology, e.g. computers, celular phones, health technology etcetera, cheaper and therefore accessible to the poor.

In fact, many of the most enthusiastic proponents of nanotechnology, such as transhumanists, see the nascent science as a mechanism to changing human nature itself – going beyond curing disease and enhancing human characteristics. Discussions on nanoethics have been hosted by the federal government, especially in the context of “converging technologies” – a catch-phrase used to refer to nano, biotech, information technology, and cognitive science.

[edit] Possible military applications

Societal risks from the use of nanotechnology have also been raised. On the instrumental level, these include the possibility of military applications of nanotechnology (for instance, as in implants and other means for soldier enhancement like those being developed at the Institute for Soldier Nanotechnologies at MIT [3]) as well as enhanced surveillance capabilities through nano-sensors. There is also the possibility of nanotechnology being used to develop chemical weapons and because they will be able to develop the chemicals from the atom scale up, critics fear that chemical weapons developed from nano particles will be more dangerous than present chemical weapons.

[edit] Intellectual property issues

On the structural level, critics of nanotechnology point to a new world of ownership and corporate control opened up by nanotechnology. The claim is that, just as biotechnology's ability to manipulate genes went hand in hand with the patenting of life, so too nanotechnology's ability to manipulate molecules has led to the patenting of matter. The last few years has seen a gold rush to claim patents at the nanoscale. Over 800 nano-related patents were granted in 2003, and the numbers are increasing year to year. Corporations are already taking out broad-ranging patents on nanoscale discoveries and inventions. For example, two corporations, NEC and IBM, hold the basic patents on carbon nanotubes, one of the current cornerstones of nanotechnology. Carbon nanotubes have a wide range of uses, and look set to become crucial to several industries from electronics and computers, to strengthened materials to drug delivery and diagnostics. Carbon nanotubes are poised to become a major traded commodity with the potential to replace major conventional raw materials. However, as their use expands, anyone seeking to manufacture or sell carbon nanotubes, no matter what the application, must first buy a license from NEC or IBM. [4] [5]

[edit] Potential benefits and risks for developing countries

Nanotechnologies may provide new solutions for the millions of people in developing countries who lack access to basic services, such as safe water, reliable energy, health care, and education. The United Nations has set Millennium Development Goals for meeting these needs. The 2004 UN Task Force on Science, Technology and Innovation noted that some of the advantages of nanotechnology include production using little labor, land, or maintenance, high productivity, low cost, and modest requirements for materials and energy.

Many developing countries, for example Costa Rica, Chile, Bangladesh, Thailand, and Malaysia, are investing considerable resources in research and development of nanotechnologies. Emerging economies such as Brazil, China, India and South Africa are spending millions of US dollars annually on R&D, and are rapidly increasing their scientific output as demonstrated by their increasing numbers of publications in peer-reviewed scientific publications.

Potential opportunities of nanotechnologies to help address critical international development priorities include improved water purification systems, energy systems, medicine and pharmaceuticals, food production and nutrition, and information and communications technologies. Nanotechnologies are already incorporated in products that are on the market. Other nanotechnologies are still in the research phase, while others are concepts that are years or decades away from development.

Applying nanotechnologies in developing countries raises similar questions about the environmental, health, and societal risks described in the previous section. Additional challenges have been raised regarding the linkages between nanotechnology and development.

Protection of the environment, human health and worker safety in developing countries often suffers from a combination of factors that can include but are not limited to lack of robust environmental, human health, and worker safety regulations; poorly or unenforced regulation which is linked to a lack of physical (e.g., equipment) and human capacity (i.e., properly trained regulatory staff). Often, these nations require assistance, particularly financial assistance, to develop the scientific and institutional capacity to adequately assess and manage risks, including the necessary infrastructure such as laboratories and technology for detection.

Very little is known about the risks and broader impacts of nanotechnology. At a time of great uncertainty over the impacts of nanotechnology it will be challenging for governments, companies, civil society organizations, and the general public in developing countries, as in developed countries, to make decisions about the governance of nanotechnology.

Companies, and to a lesser extent governments and universities, are receiving patents on nanotechnology. The rapid increase in patenting of nanotechnology is illustrated by the fact that in the US, there were 500 nanotechnology patent applications in 1998 and 1,300 in 2000. Some patents are very broadly defined, which has raised concern among some groups that the rush to patent could slow innovation and drive up costs of products, thus reducing the potential for innovations that could benefit low income populations in developing countries.

There is a clear link between commodities and poverty. Many least developed countries are dependent on a few commodities for employment, government revenue, and export earnings. Many applications of nanotechnology are being developed that could impact global demand for specific commodities. For instance, certain nanoscale materials could enhance the strength and durability of rubber, which might eventually lead to a decrease in demand for natural rubber. Other nanotechnology applications may result in increases in demand for certain commodities. For example, demand for titanium may increase as a result of new uses for nanoscale titanium oxides, such as titanium dioxide nanotubes that can be used to produce and store hydrogen for use as fuel. Various organizations have called for international dialogue on mechanisms that will allow developing countries to anticipate and proactively adjust to these changes.

In 2003, Meridian Institute began the Global Dialogue on Nanotechnology and the Poor: Opportunities and Risks (GDNP) to raise awareness of the opportunities and risks of nanotechnology for developing countries, close the gaps within and between sectors of society to catalyze actions that address specific opportunities and risks of nanotechnology for developing countries, and identify ways that science and technology can play an appropriate role in the development process. The GDNP has released several publicly accessible papers on nanotechnology and development, including "Nanotechnology and the Poor: Opportunities and Risks - Closing the Gaps Within and Between Sectors of Society"; "Nanotechnology, Water, and Development"; and "Overview and Comparison of Conventional and Nano-Based Water Treatment Technologies".

[edit] Studies on the implications of nanotechnology

  • The Royal Society's nanotech report [6] was inspired by Prince Charles' concerns about nanotechnology, including molecular manufacturing. However, the report spent almost no time on molecular manufacturing. (See Center for Responsible Nanotechnology criticism of omission of molecular manufacturing.) In fact, the word "Drexler" appears only once in the body of the report (in passing), and "molecular manufacturing" or "molecular nanotechnology" not at all. The report covers various risks of nanoscale technologies, such as nanoparticle toxicology. It also provides a useful overview of several nanoscale fields. (Someone more interested in nanoscale technologies should expand this description.) The report contains an annex (appendix) on grey goo, which cites a weaker variation of Richard Smalley's contested argument against molecular manufacturing. It concludes that there is no evidence that autonomous, self replicating nanomachines will be developed in the foreseeable future, and suggests that regulators should be more concerned with issues of nanoparticle toxicology.
  • In July 2003 the US Environmental Protection Agency [7] issued the first research solicitation in the area of nanotechnology implications, "Exploratory Research to Anticipate Future Environmental Issues - Part 2: Impacts of Manufactured Nanomaterials on Human Health and the Environment."[8] In September 2004 US EPA partnered with the National Science Foundation and the Centers for Disease Control to issue a second research solicitation, "Nanotechnology Research Grants Investigating Environmental and Human Health Effects of Manufactured Nanomaterials: A Joint Research Solicitation - EPA, NSF, NIOSH."
  • In October 2005, the National Science Foundation announced that it would fund two national centers to research the potential societal implications of nanotechnology. Located at the University of California, Santa Barbara [10]and Arizona State University [11], researchers at these two centers are exploring a wide range of issues including nanotechnology's historical context, technology assessment, innovation and globalization issues, and societal perceptions of risk.
  • A book by Geoffrey Hunt and Michael Mehta (2006) entitled Nanotechnology: Risk, Ethics and Law (London: Earthscan Book) provides a global overview of the state of nanotechology and society in Europe, the USA, Japan and Canada, and examines the ethics, the environmental and public health risks, and the governance and regulation of this most promising, and potentially most dangerous, of all technologies.
  • Determining a set of pathways for the development of molecular nanotechnology is now an objective of a broadly based technology roadmap project [12] led by Battelle (the manager of several U.S. National Laboratories) and the Foresight Institute. That roadmap should be completed by early 2007.

[edit] See also

[edit] External links

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu