ปัญหาความสอดคล้องแบบบูล
จากวิกิพีเดีย สารานุกรมเสรี
ปัญหาความสอดคล้องแบบบูล (Boolean satisfiability) หรือ SAT เป็น ปัญหาการตัดสินใจ อย่างหนึ่งที่ถูกกล่าวถึงบ่อยๆในศาสตร์ทางด้านทฤษฎีความซับซ้อนในการคำนวณ ตัวอย่างของปัญหา (instance) สำหรับปัญหานี้ก็คือ นิพจน์บูลีน (boolean expression) ที่ประกอบด้วยตัวแปร ตัวเชื่อมต่างๆ และ วงเล็บ ปัญหานี้ถามคำถามที่ว่า สำหรับนิพจน์บูลีนที่กำหนด เราสามารถทำให้นิพจน์เป็นจริงโดยการกำหนดค่าให้กับตัวแปรได้หรือไม่
ในกรณีที่เราสามารถกำหนดค่าความจริงให้กับตัวแปรแล้วทำให้นิพจน์เป็นจริงได้ เราจะกล่าวว่านิพจน์นั้น สามารถทำให้เป็นจริงได้ (satisfiable) ปัญหา SAT จัดอยู่ในกลุ่มของปัญหาเอ็นพีบริบูรณ์ (NP-complete)
ในบางครั้งเราอาจจะสนใจศีกษาความซับซ้อนของรูปแบบที่ต่างกันออกไปของปัญหา SAT ยกตัวอย่างเช่นปัญหา SAT แบบที่นิพจน์บูลีนอยู่ในรูปมาตรฐานแบบเชื่อม (หรือ Conjunctive Normal Form---CNF) ในกรณีนี้ถ้าแต่ละประพจน์เลือก (disjunct) ประกอบด้วยตัวแปรไม่เกิน 3 ตัวแปรเราจะเรียกปัญหาว่า 3-SAT ซึ่งเป็นปัญหาเอ็นพีบริบูรณ์เช่นเดียวกัน อย่างไรก็ตาม ในกรณีที่ตัวแปรในแต่ละประพจน์เลือกมีไม่เกิน 2 ตัวแปร (เรียกว่าปัญหา 2-SAT) นั้น เรามีอัลกอริธึมที่มีประสิทธิภาพในการแก้ปัญหาได้ นั่นก็คือ หรือหากจะพูดให้ชัดเจนกว่านั้น (ทั้งนี้เนื่องจากอัลกอริทึมที่ใช้แก้ปัญหา 2-SAT เป็นอัลกอริทึมที่ทำงานโดยใช้เนื้อที่เป็นลอการิธึมบนเครื่องจักรทัวริงเชิงไม่กำหนดเท่านั้น)
[แก้] ความยากของปัญหา
[แก้] อัลกอริทึมที่ใช้สำหรับปัญหา
[แก้] อ้างอิง
ปัญหาความสอดคล้องแบบบูล เป็นบทความเกี่ยวกับ คอมพิวเตอร์ อุปกรณ์คอมพิวเตอร์ หรือ เครือข่าย ที่ยังไม่สมบูรณ์ ต้องการตรวจสอบ เพิ่มเนื้อหา หรือเพิ่มแหล่งอ้างอิง คุณสามารถช่วยเพิ่มเติมหรือแก้ไข เพื่อให้สมบูรณ์มากขึ้น ข้อมูลเกี่ยวกับ ปัญหาความสอดคล้องแบบบูล ในภาษาอื่น อาจสามารถหาอ่านได้จากเมนู ภาษาอื่น ด้านซ้ายมือ |