Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Web Analytics
Cookie Policy Terms and Conditions Choleského dekompozice - Wikipedie, otevřená encyklopedie

Choleského dekompozice

Z Wikipedie, otevřené encyklopedie

Choleského dekompozice (také Choleského rozklad) je metoda rozložení symetrické pozitivně definitní čtvercové matice A na součin dolní a horní trojúhelníkové matice, přičemž jedna trojuhélníková matice je transpozicí matice druhé.

\bold A = \bold L \cdot \bold L^T

Dolní trojúhelníková matice L z tohoto rozkladu se nazývá Choleského trojúhelník matice A.

Obsah

[editovat] Využití

[editovat] Výpočet inverzní matice

Inverzní matici A-1 lze vypočítat z inverzní matice L-1 podle následujícího vztahu.

\bold A^{-1} = {\left(\bold L^{-1}\right)}^T \cdot \bold L^{-1}

Samotný výpočet inverzní matice L-1 není příliš obtížný, neboť to je také dolní trojúhelníková matice a lze ji vypočítat užitím vztahu L-1 L = E, kde E je jednotková matice.

Pro prvky na hlavní diagonále lze odvodit následující vztah.

l_{kk}^{-1} l_{kk} = 1 \ \longrightarrow \ l_{kk}^{-1} = 1 / l_{kk}

Prvky pod diagonálou lze počítat postupně zprava doleva následovně.

\sum_{i=c}^{r} l_{ri}^{-1} l_{ic} = 0 \ \longrightarrow \ l_{rc}^{-1} = - 1/l_{cc} \cdot \sum_{i=c+1}^{r} l_{ri}^{-1} l_{ic}

[editovat] Řešení soustavy lineárních rovnic

Soustavu lineárních rovnic Ax = b lze řešit převodem na dvě soustavy rovnic.

\bold L \bold y = \bold b
\bold L^T \bold x = \bold y

Vzhledem k tomu, že matice soustavy jsou trojúhelníkové, je řešení uvedených rovnic zpětným dosazením velmi snadné.

[editovat] Algoritmus rozkladu

Prvky matice L je možné počítat po sloupcích zleva a v každém sloupci odshora dolů.

Pro první sloupec platí následující.

a_{11} = l_{11} l_{11} \ \longrightarrow \ l_{11} = \sqrt{a_{11}}
a_{21} = l_{21} l_{11} \ \longrightarrow \ l_{21} = a_{21} / l_{11}
\ \vdots
a_{n1} = l_{n1} l_{11} \ \longrightarrow \ l_{n1} = a_{n1} / l_{11}

Pro druhý sloupec platí:

a_{22} = l_{21} l_{21} + l_{22} l_{22} \ \longrightarrow \ l_{22} = \sqrt{a_{22} - l_{21}^2}
a_{32} = l_{31} l_{21} + l_{32} l_{22} \ \longrightarrow \ l_{32} = \left( a_{32} - l_{31} l_{21} \right) / l_{22}
\ \vdots
a_{n2} = l_{n1} l_{21} + l_{n2} l_{22} \ \longrightarrow \ l_{n2} = \left( a_{n2} - l_{n1} l_{21} \right) / l_{22}

Pro prvky na diagonále lze, vzhledem ke znalosti celého řádku vlevo od prvku, odvodit následující vzorec.

a_{kk} = \sum_{i=1}^{k} l_{ki}^2 \ \longrightarrow \ l_{kk} = \sqrt{a_{kk} - \sum_{i=1}^{k-1} l_{ki}^2}

Pro prvky pod diagonálou lze odvodit následující vztah.

a_{rc} = \sum_{i=1}^{c} l_{ri} l_{ci} \ \longrightarrow \ l_{rc} = \left( a_{kk} - \sum_{i=1}^{c-1} l_{ri} l_{ci} \right) / l_{cc}

V jazyku C lze uvedený postup zapsat následovně.

for (c=0; c<n; c++) {
  for (sum=0, i=c-1; i>=0; i--)
    sum += sqr(L[c][i]);
  L[c][c] = sqrt(A[c][c] - sum);
  for (r=c+1; r<n; r++) {
    for (sum=0, i=c-1; i>=0; i--)
      sum += L[r][i]*L[c][i];
    L[r][c] = (A[r][c] - sum) / L[c][c];
  }
}
Static Wikipedia 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu