New Immissions/Updates:
boundless - educate - edutalab - empatico - es-ebooks - es16 - fr16 - fsfiles - hesperian - solidaria - wikipediaforschools
- wikipediaforschoolses - wikipediaforschoolsfr - wikipediaforschoolspt - worldmap -

See also: Liber Liber - Libro Parlato - Liber Musica  - Manuzio -  Liber Liber ISO Files - Alphabetical Order - Multivolume ZIP Complete Archive - PDF Files - OGG Music Files -

PROJECT GUTENBERG HTML: Volume I - Volume II - Volume III - Volume IV - Volume V - Volume VI - Volume VII - Volume VIII - Volume IX

Ascolta ""Volevo solo fare un audiolibro"" su Spreaker.
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Factorisation de Cholesky - Wikipédia

Factorisation de Cholesky

Un article de Wikipédia, l'encyclopédie libre.

La factorisation de Cholesky, nommée d'après André-Louis Cholesky, consiste, pour une matrice symétrique définie positive A, à déterminer une matrice triangulaire inférieure L tel que : A=LLT.

La matrice L est en quelque sorte une « racine carrée » de A. Cette décomposition permet notamment de calculer la matrice inverse A-1, de calculer le déterminant de A (égal au carré du produit des éléments diagonaux de L) ou encore de simuler une loi multinormale.

Sommaire

[modifier] Exemple

La matrice symétrique A :

\begin{pmatrix} 1 & 1 & 1  & 1 \\ 1 & 5 & 5  & 5 \\ 1 & 5 & 14 & 14 \\ 1 & 5 & 14 & 15 \\ \end{pmatrix}

est égale au produit à droite de la matrice triangulaire L :

\begin{pmatrix} 1 & 0 & 0  & 0 \\ 1 & 2 & 0  & 0 \\ 1 & 2 & 3  & 0 \\ 1 & 2 & 3  & 1 \\ \end{pmatrix}

et de sa transposée LT.

[modifier] Théorème

Factorisation de Cholesky d'une matrice :

Si A est une matrice symétrique définie positive, il existe au moins une matrice réelle triangulaire inférieure L telle que :

A=LLT

On peut également imposer que les éléments diagonaux de la matrice L soient tous positifs, et la factorisation correspondante est alors unique.

[modifier] Algorithme

On cherche la matrice :

L=\begin{bmatrix} l_{11}\\ l_{21} & l_{22}\\ \vdots & \vdots & \ddots\\ l_{n1} & l_{n2} & \cdots & l_{nn} \end{bmatrix}

De l'égalité A=LLT on déduit :

a_{ij}=\left(LL^{T}\right)_{ij}={\sum_{k=1}^{n}l_{ik}l_{jk}}={\sum_{k=1}^{\min\left\{ i,j\right\} }l_{ik}l_{jk}},\;1\leq i,j\leq n

puisque lpq=0 si 1≤p<q≤n.

La matrice A étant symétrique, il suffit que les relations ci-dessus soient vérifiées pour i≤j, c'est-à-dire que les éléments lij de la matrice L doivent satisfaire :

a_{ij}={\sum_{k=1}^{i}l_{ik}l_{jk}},\;1\leq i,j\leq n

Pour i=1, on détermine la première colonne de L :

(j=1) a11 = l11l11 d'où l_{11}=\sqrt{a_{11}}
(j=2) a12 = l11l21 d'où l_{21}=\frac{a_{12}}{l_{11}}
...
(j=n) a1n = l11ln1 d'où l_{n1}=\frac{a_{1n}}{l_{11}}

On détermine la jème colonne de L, après avoir calculé les (j-1) premières colonnes :

(i=j) a_{ii}=l_{i1}l_{i1}+\ldots+l_{ii}l_{ii} d'où l_{ii}=\sqrt{a_{ii}-{\sum_{k=1}^{i-1}l_{ik}^{2}}}
(i=j+1) a_{i,i+1}=l_{i1}l_{i+1}+\ldots+l_{ii}l_{i+1,i} d'où l_{i+1,i}=\frac{a_{i,i+1}-{\sum_{k=1}^{i-1}l_{ik}l_{i+1,k}}}{l_{ii}}
...
(i=n) a_{i,n}=l_{i1}l_{n1}+\ldots+l_{ii}l_{ni} d'où l_{ni}=\frac{a_{in}-{\sum_{k=1}^{i-1}l_{ik}l_{nk}}}{l_{ii}}

Il résulte du théorème précédent qu'il est possible de choisir tous les éléments lii>0 en assurant que toutes les quantités

a_{11},\ldots,a_{ii}-{\sum_{k=1}^{i-1}l_{ik}^{2}},\ldots

sont positives.

[modifier] Voir aussi

Portail des mathématiques – Accédez aux articles de Wikipédia concernant les mathématiques.

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu