New Immissions/Updates:
boundless - educate - edutalab - empatico - es-ebooks - es16 - fr16 - fsfiles - hesperian - solidaria - wikipediaforschools
- wikipediaforschoolses - wikipediaforschoolsfr - wikipediaforschoolspt - worldmap -

See also: Liber Liber - Libro Parlato - Liber Musica  - Manuzio -  Liber Liber ISO Files - Alphabetical Order - Multivolume ZIP Complete Archive - PDF Files - OGG Music Files -

PROJECT GUTENBERG HTML: Volume I - Volume II - Volume III - Volume IV - Volume V - Volume VI - Volume VII - Volume VIII - Volume IX

Ascolta ""Volevo solo fare un audiolibro"" su Spreaker.
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
コレスキー分解 - Wikipedia

コレスキー分解

出典: フリー百科事典『ウィキペディア(Wikipedia)』

コレスキー分解(- ぶんかい)は、正定値対称行列Aを対角成分がすべて正であるような下三角行列Lとこの行列Lの共役転置L*との積

\mathbf{A} = \mathbf{L} \mathbf{L}^{*} \qquad (\mathbf{A} \in \mathbb{K}^{m \times m})

に分解することを言う。LU分解の特別な場合である。André-Louis コレスキーにちなんで名づけられた。

目次

[編集] 注意

行列Lが実数値のエントリのみを持つなら、Lの共役転置はL転置と一致し、コレスキー分解は

\mathbf{A} = \mathbf{L} \mathbf{L}^{T} \qquad (\mathbf{A} \in \mathbb{R}^{n \times n})

へと単純化される。

[編集] アルゴリズム

コレスキー法はガウスの消去法の改良版である。

\mathbf{A}^{(1)} := \mathbf{A}

から始める。行列Aは対称行列なので、

\mathbf{A}^{(i)} = \begin{pmatrix} \mathbf{I}_{i-1} & 0 & 0 \\ 0 & a_{i,i} & \mathbf{b}_{i}^{*} \\ 0 & \mathbf{b}_{i} & \mathbf{B}^{(i)} \end{pmatrix}

と書くことができる。ここで、

\mathbf{L}_{i} : = \begin{pmatrix} \mathbf{I}_{i-1} & 0 & 0 \\ 0 & \frac{1}{\sqrt{a_{i,i}}} & 0 \\ 0 & - \frac{1}{a_{i,i}} \mathbf{b}_{i} & \mathbf{I}_{n-i} \end{pmatrix}

と定義すれば、A(i)

\mathbf{A}^{(i)} = \mathbf{L}_{i}^{-1} \begin{pmatrix} \mathbf{I}_{i-1} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \mathbf{B}^{(i)} - \frac{1}{a_{i,i}} \mathbf{b}_{i} \mathbf{b}_{i}^{*} \end{pmatrix} \mathbf(\mathbf{L}_{i}^{-1})^{*}

と3つの行列の積で書き表すことができる。ここで、

\mathbf{A}^{(i+1)} : = \begin{pmatrix} \mathbf{I}_{i-1} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \mathbf{B}^{(i)} - \frac{1}{a_{i,i}} \mathbf{b}_{i} \mathbf{b}_{i}^{*} \end{pmatrix}

とおけば、

\mathbf{A}^{(i)} = \mathbf{L}_{i}^{-1} \mathbf{A}^{(i+1)} \mathbf(\mathbf{L}_{i}^{-1})^{*}

と書き表すことができる。n回繰り返すと、A(n+1) = Inとなるため、 繰り返しはここで終了する。最終的に、求めるLは、

\mathbf{L} := \mathbf{L}_{1} \mathbf{L}_{2} \dots \mathbf{L}_{n}

である。

注:Inはn次の単位行列とする。

[編集] コレスキー Banachiewicz 法

コレスキー Banachiewicz 法 は直接下三角行列 L の各エントリを計算するための式を与える。行列 L の左上隅から始めごとに計算を進める。

l_{i,i} = \sqrt{ a_{i,i} - \sum_{k=1}^{i-1} l_{i,k} \overline{l_{i,k}} }
l_{i,j} = \frac{1}{l_{j,j}} \left( a_{i,j} - \sum_{k=1}^{j-1} l_{i,k} \overline{l_{j,k}} \right), \qquad\mbox{for } i<j

[編集] コレスキークラウト法

コレスキークラウト法 はコレスキー Banachiewicz 法とは少し異なる方法で、下三角行列Lの各エントリを計算する。すなわち、行列Lの左上隅から始めごとに計算を進める。使用する計算式はコレスキー Banachiewicz 法と同一である。

[編集] 修正コレスキー分解

上述した分解法では、分解後の行列Lに無理数が現れることがほとんどで、コレスキー分解の結果を利用した計算が面倒となる。そこで、この欠点を解消するために考え出された方法が修正コレスキー分解である(改訂コレスキー分解と呼ぶことがある)。修正コレスキー分解では

A=LDL*

の形に分解する。ここで、Dは対角行列で、行列Lの対角成分はすべて1とする。

[編集] 不完全コレスキー分解

不完全コレスキー分解は、修正コレスキー分解により行列Aを

A=LDL*

と分解するところ、行列Lを後の計算が簡略化されるものに変更し、

A=LDL*+N

と分解する手法である(Nはある行列)。

共役勾配法(傾斜法)の前処理の1つとして採用されることがある。

[編集] 関連項目

[編集] 外部リンク

Cholesky分解ノート(要Acrobat Reader)

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu