New Immissions/Updates:
boundless - educate - edutalab - empatico - es-ebooks - es16 - fr16 - fsfiles - hesperian - solidaria - wikipediaforschools
- wikipediaforschoolses - wikipediaforschoolsfr - wikipediaforschoolspt - worldmap -

See also: Liber Liber - Libro Parlato - Liber Musica  - Manuzio -  Liber Liber ISO Files - Alphabetical Order - Multivolume ZIP Complete Archive - PDF Files - OGG Music Files -

PROJECT GUTENBERG HTML: Volume I - Volume II - Volume III - Volume IV - Volume V - Volume VI - Volume VII - Volume VIII - Volume IX

Ascolta ""Volevo solo fare un audiolibro"" su Spreaker.
CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Diagonalmatrix - Wikipedia

Diagonalmatrix

aus Wikipedia, der freien Enzyklopädie

Als Diagonalmatrix bezeichnet man im mathematischen Teilgebiet der linearen Algebra eine quadratische Matrix, bei der alle Elemente außerhalb der Hauptdiagonale Null sind. Diagonalmatrizen sind deshalb allein durch die Angabe ihrer Hauptdiagonale bestimmt und man schreibt häufig

D = {\rm diag} (d_1, d_2, \dots, d_n) = \begin{pmatrix}   d_1 & 0 & \cdots & 0 \\    0 & d_2 & \ddots & \vdots \\   \vdots & \ddots & \ddots & 0 \\   0 & \cdots & 0 & d_n \end{pmatrix}.

Inhaltsverzeichnis

[Bearbeiten] Rechenoperationen

[Bearbeiten] Matrixaddition, Skalarmultiplikation und Matrixmultiplikation

Die Matrixaddition, Skalarmultiplikation und Matrixmultiplikation gestalten sich bei Diagonalmatrizen sehr einfach:

{\rm diag} (a_1, a_2, \dots, a_n) \cdot {\rm diag} (b_1, b_2, \dots, b_n) = {\rm diag} (a_1 \cdot b_1, a_2 \cdot b_2, \dots, a_n \cdot b_n)

Multiplikation einer Matrix A von links mit einer Diagonalmatrix entspricht der Multiplikation der Zeilen von A mit den Diagonaleinträgen. Die entsprechende Multiplikation von Rechts entspricht der Multiplikation der Spalten von A mit den Diagonaleinträgen.

[Bearbeiten] Berechnung der Inversen

Eine Diagonalmatrix ist genau dann invertierbar, wenn keiner der Einträge auf der Hauptdiagonale 0 ist. Die inverse Matrix berechnet sich dann wie folgt:

{\rm diag} (d_1, d_2, \dots, d_n)^{-1} = {\rm diag} (d_1^{-1}, d_2^{-1}, \dots, d_n^{-1})

[Bearbeiten] Eigenschaften von Diagonalmatrizen

[Bearbeiten] Diagonalisierbarkeit

Eine beliebige quadratische Matrix A heißt diagonalisierbar, wenn es eine Diagonalmatrix D gibt, zu der sie ähnlich ist.

Für eine lineare Abbildung f\colon V \to V (Vektorraum-Endomorphismus) bedeutet dies, dass eine Basis B existiert, bei der die Darstellungsmatrix M_B^B(f) eine Diagonalmatrix ist.

Alternativ lässt sich auch definieren: eine quadratische Matrix A ist genau dann diagonalisierbar, wenn es n linear unabhängige Eigenvektoren von A gibt.

[Bearbeiten] Eigenschaften einer diagonalisierbaren Matrix

Ist eine Matrix diagonalisierbar, so ist die geometrische Vielfachheit ihrer Eigenwerte gleich der jeweiligen algebraischen Vielfachheit. Das bedeutet, die Dimension der einzelnen Eigenräume stimmt jeweils mit der algebraischen Vielfachheit der entsprechenden Eigenwerte im charakteristischen Polynom der Matrix überein.

[Bearbeiten] Diagonalisierung

Ist eine Matrix A diagonalisierbar, existiert eine Diagonalmatrix DA für die die Ähnlichkeitsbedingung erfüllt ist:

DA = S − 1AS

Die Diagonalisierung dieser Matrix besteht daraus, die Diagonalmatrix DA und die zugehörige Basis zu berechnen. Dies geschieht in drei Schritten:

  1. Es werden die Eigenwerte λi der Matrix A bestimmt.
  2. Es werden die Eigenräume E\left(\lambda_i\right) zu allen Eigenwerten λi berechnet, also folgendes Gleichungssystem gelöst:
    ( A - \lambda_i I )  \cdot \begin{pmatrix}   e_1 \\ \vdots \\ e_n   \end{pmatrix} = 0
  3. Nun ist die Diagonalform DA der Matrix A bezüglich der Basis B:
    D_A = {\rm diag} (\lambda_1, \lambda_2, \dots, \lambda_n)
    S = {E1),...,En)}

[Bearbeiten] Simultane Diagonalisierung

Gelegentlich will man auch zwei unterschiedliche Matrizen A,B mit der selben Transformation S diagonalisieren. Falls das gelingt, gilt SAS − 1 = D1 und SBS − 1 = D2 und da D1 und D2 Diagonalmatrizen sind,

D_1\cdot D_2 = D_2\cdot D_1 \Rightarrow B\cdot A= S^{-1}D_2S\cdot S^{-1}D_1S= S^{-1}D_1D_2S= A\cdot B.

Also müssen die Endomorphismen miteinander vertauschen. In der Quantenmechanik haben zwei solche Operatoren dann ein gemeinsames Eigenwertsystem und man kann Zustände von einem System in das andere entwickeln.

[Bearbeiten] Beispiel

Die Diagonalmatrix

\mbox{diag} \left(1,3,5\right)= \begin{pmatrix} 1 & 0 & 0 \\  0 & 3 & 0 \\  0 & 0 & 5 \end{pmatrix}

besitzt die Eigenwerte

\lambda_1=1,\; \lambda_2=3,\; \lambda_3=5

mit zugehörigen Eigenräumen / Eigenvektoren

E_1=[\begin{pmatrix} 1 \\  0 \\  0  \end{pmatrix}],\quad E_2=[\begin{pmatrix} 0 \\  1 \\  0  \end{pmatrix}],\quad E_3=[\begin{pmatrix} 0 \\  0 \\  1  \end{pmatrix}].

[Bearbeiten] Spezielle Diagonalmatrizen

  • Die Einheitsmatrix ist ein Spezialfall einer Diagonalmatrix, bei der alle Elemente der Hauptdiagonale den Wert 1 haben.
  • Die Nullmatrix ist ein Spezialfall einer Diagonalmatrix, bei der alle Elemente der Hauptdiagonale den Wert 0 haben.

[Bearbeiten] Siehe auch

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu